Radioactive-isotope Science Laboratory

Exotic Nuclear Physics Group Summary

     It has been revealed that nuclei far from stability have exotic structures such as halo, skin, magicity loss, and new magic numbers. Recently many scientific efforts for understanding unstable nuclear structures are being made over the world because it is a key issue of the nuclear physics and critical for understanding the nucleosynthesis. Electron scattering provides the most powerful and reliable information of the nuclear structure. Indeed, many stable nuclei have been investigated and our understanding of nuclear structures have been established by electron scattering experiments in the latter half of the 20th century. Although the actualization of electron scattering off unstable nuclei has been awaited, this method has not been applied for unstable nuclei because of the difficulty to prepare the target material made of unstable nuclei due to their short lives. We proposed a completely new target-forming technique, namely SCRIT (Self-Confining Radioactive isotope Ion Target) which makes electron elastic scattering off unstable nuclei possible. After the success of the feasibility study of the SCRIT system, we have developped the SCRIT electron scattering facility at RIKEN RI Beam Factory, Japan. The facility is almost completed, and the first experiment of electron scattering off unstable nuclei will start in autumn 2015.

STAFF

Assistant Professor Yuki Honda

Research Professor Toshimi Suda

Research Professor Tadaaki Tamae

Research Fellow Toshio Suzuki

Nuclear and Radiochemistry Group Summary

     Our group has conducted various studies on nuclear- and radio-chemistry using electron accelerators and a variety of radioactive isotopes. In our facility, the radioactive isotopes are produced in the photo-nuclear reactions caused by bremsstrahlung from accelerated electrons up to 60 MeV. We also use a cyclotron facility and nuclear fuel material usage facility at Tohoku University to produce radioactive isotopes that are complementary to those produced in our facility.
The radioactive isotopes produced are utilized for studies of nuclear decay properties, photon activation analysis, chemical behavior, material sciences, and so on. Additionally, photo- nuclear reaction yields and bremsstrahlung distribution at an irradiation site are measured as basic data.

STAFF

Associate Professor Hidetoshi Kikunaga

Assistant Professor Takuya Yokokita

Assistant Professor Yuki Ohnishi