RIBTTIT R sieE 5542843% 20104

TQHOKU

RESEARCH REPORT or
LABORATORY or
NUCLEAR SCIENCE

Vol.42&43 2010

TOHOKU UNIVERSITY



Editor
YAMAZAKI, Hirohito

Research Center for Electron Photon Science
Tohoku University
1-2-1 Mikamine, Taithaku, Sendai1 982-0826

Japan

Phone: +81, 22-743-3400
Fax: +81, 22-743-3401

Web site: http://www.Ins.tohoku.ac.jp/

982-0826 MG KHRK =12%1-2-1
WAL RFE AR > 5 —
I 022-743-3400
Fax 022-743-3401



Preface

The Laboratory of Nuclear Science (LNS) affiliated to Graduate School of Science is aimed at
promoting fundamental study and applied research of the various classes of materials in nuclear science.
It was reorganized into a new laboratory directly operated by Tohoku University on December 1, 2009,
keeping the main facilities unchanged. The laboratory operates two accelerators: a 300 MeV electron
LINAC and an electron synchrotron ring capable of boosting and storing electrons up to 1.2 GeV. The
accelerators have been in operation for more than 40 years for users not only in Tohoku University but
also outside. The present Research Report is the final issue reporting on research activities at LNS for

the academic years 2008 and 2009.

Two major experiments, FOREST and NKS2, have been successfully conducted on individual
GeV photon beam lines during the period covered in this report. The first data analysis gives the basic
performance of FOREST, a 4n electro-magnetic calorimeter. A vertex drift chamber, VDC, has been
installed into a neutral kaon spectrometer, NKS2, to replace the previously used inner detectors. And

data analysis is now going on for the NKS2 experiment equipped with the new detector system.

The electron LINAC provides also high-intensity electron and photon beams below 50 MeV,
which have been used for basic research such as life-time measurements of various nuclei in a certain

environment as well as for production of radioactive isotopes.

The capability of the laboratory has been considerably improved by operation of a positron beam
line constructed in 2006. The positron beam is produced by utilizing GeV Bremsstrahlung photons with
a converter placed in front of a charge sweeping magnet, RTAGX, in GeV-y Experimental Hall. The
positron beam of an energy up to 850 MeV has been used mainly for detector development by many
users in various fields such as Astrophysics, High Energy Physics, Nuclear Physics, and Material

Science.

I’d like to take this opportunity to thank Jirohta Kasagi, Professor Emeritus of Tohoku University,
who stepped down from the position of LNS director at the end of November, 2009 and then retired in
March 2010. He had been LNS director for about 12 years and made the best use of his deep
understanding of science to lead the laboratory to what it is today. I’'m fully convinced that this would

not have been possible without his expertise as a scientist and leader.

SHIMIZU Hajime

Director of Research Center for Electron Photon Science
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Current status of meson photoproduction experiments with
FOREST

T. Ishikawa!, H. Fujimura!, R. Hashimoto!, S. Kaida?, J. Kasagi!, K. Maeda?,
S. Ogushi!, M. Sato!, H. Shimizu!, H. Sugai', K. Suzuki!, S. Takahashi?,
and H. Yamazaki!

Laboratory of Nuclear Science (LNS), Tohoku University, Sendai 982-0826, Japan
2Department of Physics, Tohoku University, Sendai 980-8578, Japan

Meson photoproduction experiments with FOREST started in May 2008. The main purpose of the
FOREST experiments is to study a nucleon resonance N*(1670), which is a candidate of antidecuplet
pentaquark baryons, via n photoproduction on the neutron. The 8 series of long term FOREST exper-
iments were carried out from May 2008 to November 2009 to measure the differential and total cross
sections for the vp — np and vd — npn reactions.

The photoproduction data were acquired with two STB circulating currents of 1200 and 920 MeV.
The numbers of events collected were 1.88 G, 2.02 G, and 0.20 G events for hydrogen, deuterium, and
empty targets in the high energy mode, and those were 100 M, 86 M, and 13 M events in the low energy
one. In this report, the newly constructed plastic scintillator hodoscope in front of a backward calorime-
ter Rafflesia II is described, and the current status of the analysis on the performance of FOREST is

presented.

§1. Nucleon resonance N*(1670)

Study of exotic hadrons has been a subject of great interest in nuclear physics since the S = +1
baryon resonance ©F was observed at SPring-8/LEPS for the first time [2]. Baryons might have other
configurations than 3 valence quarks as a fraction such as 5 quarks, 7 quarks, and so on [1]. Since
the observed ©* has a narrow width, the ©7 is thought to be a member of antidecuplet pentaquark
baryons with the lowest mass [3]. After the LEPS experiment, both the positive and negative results
have been reported by many other facilities. Searching for other members is important to establish the
pentaquark picture. Recently, a narrow bump was observed at GRAAL [4], LNS [5], and CB-ELSA [6] in
1 photoproduction on the deuteron. This bump would be attributed to a member of antidecuplet baryons
with hidden strangeness since no signature corresponding to this bump has been observed so far in 7
photo-production on the proton [7].

Fig. 1 shows the baryon octet and anti-decuplet penta-quark baryons. Adjacent two baryons to the
©* are members with hidden strangeness. We call the left one Ng and the right one N5+ . The Ng can
be photoproduced from the neutron because both the charge and U-spin are conserved in the reaction.

On the other hand, photoproduction of IV, 5+ having a U-spin of 3/2 from the proton is forbidden since the



U -spins of the photon and the proton are zero and a half, respectively.

Y=B+S A
@+

3.7 0 > 27 ).}V, >
>
AIEY,) I,
1/2 1 0 1/2 1 3/2

Octet Anti-decuplet

Fig.1. Octet baryons and anti-decuplet penta-quark baryons.

Thus, the nucleon resonance N*(1670) which is photoexcited only from the neutron and have a
heavier mass than © is a candidate of IV, 5?. The FOREST experiments measure the total and differential
cross sections of the vp — np and vd — mpn reactions to investigate the properties of the relevant

resonance: mass, width, spin, parity, and so on.

§2. Electromagnetic calorimeter FOREST

Meson photoproduction experiments were carried out at Laboratory of Nuclear Science (LNS), To-
hoku University. Bremsstrahlung photons were used as a beam, being generated with a carbon thread
moving into circulating 1200 or 920 MeV electrons in the STretcher booster (STB) ring. Each photon
was tagged by detecting the corresponding post-bremsstrahlung electron inside a bending magnet of the
ring. The details of the photon tagging counter STB-Tagger II are described elsewhere [10]. The energies
of the tagged photon beam ranged from 740 to 1150 MeV for circulating 1200 MeV electrons and from
580 to 880 MeV for 920 MeV ones.

Two ~ rays from 7°

SCISSORS II from 2003 July to December 2005. It consisted of 206 pure CsI crystals, and covered 12.6%
of the total solid angle. It was difficult to detect all the +’s coming from 7w° and 7 decay due to the small

— v or n — ~~ were detected with an electromagnetic (EM) calorimeter

solid angle of SCISSORS II. In addition to that the process of multi-m production is dominant in the
GeV energy region. There is a huge background made up with wrong combinations of 4’s, which do not
form a peak of 7% nor n in the v+ invariant mass distribution. To suppress the background due to the
wrong combinations, a new EM calorimeter complex FOREST covering 90% of the total was constructed.
The details of the design are described elsewhere [11] and the status report of FOREST achieved in
2006-2007 can be found in Ref. [12-15]. Fig. 2 shows the schematic view of FOREST.

Construction of a plastic scintillator hodoscope in front of Rafflesia II (LOTUS) has been much



LEPS Backward Gamma
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Fig.2. Schematic view of FOREST. It consists of three EM calorimeters: the forward one with
192 pure Csl crystals ‘SCISSORS III, the central one with 252 lead scintillating fiber
modules ‘LEPS Backward Gamma detector,; and the backward one with 62 lead glass
Cerenkov counters ‘Rafflesia I1.” Plastic scintillator hodoscopes are placed in front of these
calorimeters: SPIDER, IVY, and LOTUS.

delayed. This is because nucleons generated by the YN — 7N and YN — 7N reactions do not
come to Rafflesia II, and because the lead glass Cerenkov counters used in Rafflesia II is insensitive to
charged hadrons. LOTUS was constructed from 9th to 10th September in 2009, it consists of 12 plastic
scintillators with a thickness of 5 mm. To reject the inefficiency coming from a gap, adjacent scintillators

have an overlap. Fig. 3 shows the schematic view and photo of LOTUS.

8§3. Collected data

The 8 series of long period FOREST experiments were carried out from May 2008 to November
2009 to measure the differential and total cross sections for the vp — mp and vd — mpn reactions.
The targets used were liquid hydrogen, deuterium, and empty. The developed FOREST cryogenic target
system [16] enables us to change targets within 6 hours. The high speed data acquisition system (DAQ)
FOREST-DAQ dedicated to the FOREST experiments [17] was used. The DAQ efficiency was 76% at the
trigger rate of 2 kHz.



Fig.3. Schematic view and photo of LOTUS. It consists of 12 plastic scintillators with a thickness
of 5 mm. Rafflesia II is removed temporarily for the contraction of LOTUS.

The trigger condition for the data acquisition was described as
Z {[ST 7] ® [#Groups > 2|}. (@))

Channels of STB-Tagger II were divided into 16 groups so that the counting rate of each group should be
the same, and ST 7 (¢ = 1,...,16) denotes an OR signal of each group. Crystal signals of SCISSORS III
(S3) were divided into 10 groups, and Lead/SciFi signals of LEPS Backward Gamma detector (BG) were
divided into 18 groups. An output signal was generated in an S3 group when a linear sum of signals
belonging to it exceeded the threshold. An output signal of a BG group was an OR signal of Lead/SciFi
ones belonging to it. The #Groups > 2 stands for the signal which was generated when more than two
output signals of S3 and BG groups were generated. Table 1 summarizes the number of spills and events
in the FOREST experiments.

Construction of Rafflesia II finished after the 2008A term ended, and the readout of signals from
all the counters in Rafflesia IT was ready from the 2008C. LOTUS was constructed just before the 2009D
started. The data taking with the deuterium target started in the 2008C, and the data for both the

hydrogen and deuterium targets were acquired in a term except for a short term 2009C.

§4. Calibration of energy and timing
The calibration of the energy and timing of EM calorimeter modules and plastic scintillators is

discussed in this section. The software alignment of the SPIDER plastic scintillators is also described.



Table 1. Numbers of spills and events collected in the FOREST experiments. The circulating
electron energy of the STB ring was 1200 MeV for the periods from 2008A to 2009D, and
was 920 MeV for the 2009E period. The targets used were liquid hydrogen, deuterium,

and empty.

period hydrogen deuterium empty
#spills #events #spills #events | #spills #events
2008A 10.83 k 76.49 M — — 350k 3043 M
2008B 29.17k 23448 M — — 796k 2748 M
2008C 2552k 388.15M 1143k 28293M | 1993k 73.20M
2009A 23.16k 225.14M | 2028k 29743M | 6.00k 13.58 M
2009B 2398k 211.34M | 3547k 54843M | 599k 13.31 M
2009C 2745k 25413 M — — 493k 13.84 M
2009D 56.38k 49271 M | 4528k 891.66M | 7.31k 23.40M
2009E 34.84 k 100.37 M 22.89 k 85.89M | 16.48k 12.76 M
total (1200 MeV) || 196.48 k 1882.44 M | 112.31k 2017.50M | 55.63k 19522 M
total (920 MeV) 3484k 100.37TM | 2289k 85.80M | 1648k 1276 M

4.1 EM calorimeter modules
When a several hundred MeV photon is incident on an EM calorimeter module, it deposits its energy
to some modules close to the incident position through the generation of the EM shower. Thus, several
modules having energy information of the incident particle is treated as a cluster . A cluster is recognized
in the following procedure:
1. the modules whose signals have timing information or exceed a certain threshold are selected,
2. all the modules adjacent to the ones selected in the condition 1 are added, and
3. the set of the modules selected in the conditions 1 and 2 are regarded as a cluster.

The charge of the cluster is determined from the response of the plastic scintillators in front of it.

The energy and momentum direction of the cluster is reconstructed from the energies of the modules
belonging to it. The treatment of the SCISSORS III cluster is described in Ref. [18, 19] which has been
developed originally for the previous EM calorimeter SCISSORS II. Since the particles generated in
the target region are not injected perpendicularly to the front face of a CsI crystal, the reconstructed
position assuming the particle is perpendicularly incident on a CsI crystal is modified by taking into
account the maximum shower depth (a depth having the maximum energy deposit density) as a function
of the particle energy. The energy of the Backward Gamma cluster is given by the sum of the module
energies belonging to it, and the momentum direction is determined from the energy weighted average
of the module positions (the center of the front face). The treatment of the Rafflesia II cluster is described
in Ref. [20]. The energy is simply given by the sum of the module energies. The position given by the
energy weighted sum of the module positions is modified in the same way as SCISSORS III.

The energy calibration of the EM calorimeter modules is made so that the 7° peak in the 4+ invari-
ant mass distribution should be the 7 mass where a neutral cluster is assumed as a photon [19-22].
The timing calibration of EM modules is made incorporating the pulse-height time-walk correlation for

the photon clusters [23-26].



4.2 Plastic scintillators

A plastic scintillator is insensitive to the photon basically. The energy and timing calibrations of
SPIDER and IVY plastic scintillators are made by using positron and electron clusters [27-31]. Charged
pion clusters are suppressed by requiring the condition that the timing difference between STB-Tagger
IT and the associating EM cluster is the same as that of the photon (within [—1,+1) ns) and that the
energy leakage exists to adjacent modules. The calibration of LOTUS plastic scintillators are made by
using the clusters that the energy deposit to the plastic scintillator is twice as that for the penetration
of the minimum ionizing particle [32]. Both the energy and timing are calibrated by taking into account

the polar angle dependence of the incident position for three hodoscopes.

4.3 Alignment of the SPIDER plastic scintillators

SPIDER consists of three layers, each of which is made up of 24 identical spiral-shaped plastic
scintillators (PS) [13]. The first layer comprises the left-handed PS’s, and the others comprise the right-
handed ones. The actual placement of the PS’s are investigated by using the collected events.

In the original design, a PS in the third layer is placed by rotating +5° about z axis with respect
to a PS in the second one. Here, we define the responding PS numbers nay, n?;), and nzg). When we
assume the number of the incident particles is uniform in the azimuthal angle, the ratio of the number
of events is expected to be 0.5 between n&) — n(g) =1and na) — n(+3) = 0 (mod 24). The actual ratio of
the number of events are obtained by analyzing the collected data. To suppress the bias coming from the
trigger condition for the data acquisition system, the events are analyzed that the number of clusters
in BG is larger than 1. Fig 4a) shows the ratio of the number of events between n?rz) — n(+3) =1 and

na) — n;%) = 0. The ratio is almost constant independently of the PS number, and the average one is

0.600. This ratio suggests the rotation angle of the third layer is +5.63° with respect to the second.
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Fig.4. a) Ratio of the number of events between n(+2) — n(+3) =1 and nz;) — n@) = 0 (mod 24). b)
Placement of the plastic scintillators in the case ng) + n&) = 1 where the relative phase

for the first layer ¢(Ll) is from —57.0° to —55.0° with a 0.5° step. c) Placement of the
plastic scintillators in the case ngo)+ na) = 1 where ¢(Ll) ranges from —57.0° to —55.0°.

An overlap between two specified PS’s are checked whether the events exist or not that they are



responding. The collected data suggests two PS’s in the first and second layers have overlaps in the case
ng) + n?’z) = 2-15 for nz;) - n@) = 1, and in the case n;, + n?’z) = 1-15 for nz;) — n&) = 0, respectively.
Fig. 4b) and 4c) show the placements of PS’s with the relative phase for the first layer ¢§;1) ranging from
—57.0° to —55.0° in the case that n ;) + n(g) =landn; + nfrz) = 1, respectively. The ¢(L1) should be
larger than —55.0° because the events do not exist that satisfies ng) + n(;) = 16, and it should be less
than —56.0° because the events with three PS’s responding in the three layers do not exist that satisfies
ng) + nz;) = 1. Since a very little events are observed with n ) + n?‘z) =1and na) — n?é) = 1, the value
of —55.0° is adopted for qb(lil). The relative rotation angle of three layers have been determined.

To determine the absolute rotation angle of SPIDER about z axis, the difference of the azimuthal
angles given by SPIDER and EM calorimeters are estimated. At first, the azimuthal angle given by
SPIDER is compared with that of the SCISSORS III (S3) cluster. To enhance the electron and positron
clusters, the events are selected that the number of members having TDC information in the S3 clusters
is larger than 2. Fig. 5a) shows the difference distribution of the azimuthal angles given by SPIDER
and S3. The shape of the peak is symmetric, and the mean 2.39° + 0.01° and width 6.60° + 0.01° are

obtained by fitting it with a Gaussian function.
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Fig.5. a) Difference distribution of the azimuthal angles given by SPIDER and SCISSORS III.
The azimuthal angles are given by an overlap of three PS’s of SPIDER and by the position
of the front face of the maximum energy crystal in the SCISSORS III cluster. b) Difference
distribution of the azimuthal angles given by SPIDER and the 1 missing momentum. The
7 missing momentum is calculated from the incident photon energy and the energy and
position of two BG clusters.

The azimuthal angle given by SPIDER is also compared with that determined from cluster infor-
mation of LEPS Backward Gamma detector (BG). The reaction of interest is yp — np. The proton is
detected with S3, and two +’s from 7 decays are detected with BG. The azimuthal angle of the proton is
calculated from the n missing momentum. The events that satisfies the following condition are selected:

1. energy of each BG cluster is larger than 100 MeV,
2. the v+ invariant mass should be larger than 400 MeV, and
3. 1 missing mass is less than 1200 MeV.



Fig. 5b) shows the difference distribution of the azimuthal angles given by SPIDER and BG. The shape
of the peak is broader than that in the SPIDER and S3 case, but it is also symmetric. The mean and
width obtained by fitting the peak with a Gaussian function are 2.84° 4+ 0.01° and 13.07° + 0.01°, re-
spectively. The means determined by two distributions have similar values, and the average 2.62° of
them is adopted for the absolute rotation angle. The details of the analysis on the software alignment of

SPIDER are described in Ref. [33, 34].

§5. Detection of nucleons with SCISSORS III
The performance of SPIDER and SCISSORS III has been investigated by using the yN — nN
reaction events. The detection efficiency and precise time of flight reconstruction are discussed in the

case that the nucleon is incident on SCISSORS III.

5.1 Detection efficiency

At first, the detection efficiency of SCISSORS III in response to the proton is estimated. Here,
the detection efficiency is defined as a probability of detecting the proton which is emitted within the
effective coverage of SCISSORS III.

The protons generated in the vp — mp reaction are used in the analysis from the events taken for
the hydrogen target. The events are selected in the the same way as described in §4.3. It is determined
from the n missing momentum whether the protons emit or not within the effective coverage of SCIS-
SORS III. Fig. 6 shows the difference of radii at the SPIDER plane given by the SCISSORS III cluster
and the n missing momentum under the condition that the protons are detected with SCISSORS III at
the radius from 270 to 300 mm. Since the width of the residual distribution is 52.4 + 0.9 mm, the pro-
tons coming to the radius from 270 to 300 mm at the SPIDER plane are selected by using the 1 missing

momentum information.
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Fig.6. Difference of radii at the SPIDER plane given by SPIDER and the n missing momentum
for the hydrogen target where the protons are detected with SCISSORS III at the radius
from 270 to 300 mm.



Fig. 7 shows the detection efficiency of SCISSORS III in response to the proton as a function of
the momentum. The proton detection efficiency of SPIDER requiring that one of the plastic scintillators
responds is also estimated and shown in Fig. 7. Since the low momentum protons stop in the mate-
rial on the way to SPIDER or SCISSORS III, the efficiency is not unity at the momentum less than
600 MeV/c, and that of SPIDER is higher than that of SCISSORS III especially at the momentum less
than 500 MeV/c.
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Fig.7. The detection efficiency of SCISSORS III and SPIDER in response to the proton as a
function of the momentum. The efficiency of SPIDER is higher than that of SCISSORS
III especially in the low momentum region.

As a next step, the detection efficiency of SCISSORS III in response to the neutron is estimated.
The neutrons generated in the yn — nn reaction are selected in the analysis from the events taken
for the deuterium target. Since the neutron in the deuteron have some momentum due to the Fermi
motion, the residual distribution of radii at the SPIDER plane becomes broader given by the SCISSORS
ITI cluster and the 7 missing momentum. Fig. 8 shows the difference of radii at the SPIDER plane given
by the SCISSORS III cluster and the n missing momentum under the condition that the protons are
detected with SCISSORS III at the radius from 270 to 300 mm. The width of the residual distribution is
79.3 + 1.4 mm.

The neutrons coming to the radius from 270 to 300 mm at the SPIDER plane are selected by using
the n missing momentum information. The probability of the neutrons actually coming to the effective
area of SCISSORS III in this selection is not unity, and it is found to be 94.1% from a GEANT3 based
Monte-Carlo (MC) simulation. The detected nucleons are distinguished by using information on the
SPIDER response. The neutron detection efficiency is estimated by taking the proton one into account.
Fig. 9 shows the detection efficiency of SCISSORS III in response to the neutron as a function of the
momentum. SCISSORS III has a 40% neutron detection efficiency in the high momentum region. This
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Fig.8. Difference of radii at the SPIDER plane given by SPIDER and the n missing momentum
for the deuterium target where the protons are detected with SCISSORS III at the radius
from 270 to 300 mm.

behavior can be qualitatively explained by the MC simulation, and the absolute values depend on the
threshold values of CsI crystals. The details of the analysis on the detection efficiency of SCISSORS III

in response to the nucleons are discussed elsewhere [35].
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Fig.9. The detection efficiency of SCISSORS III in response to the neutron as a function of the
momentum. It increases from 300 MeV/c and reaches 40% at 800 MeV/c.

5.2 Time of flight
The timing calibration of the SPIDER plastic scintillators is made by using electrons and positrons.

The reconstructed timing is not good for the proton because the pulse-height time-walk correction is
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not appropriate for the proton and because the leading edge of the analog signal might be different for
different particles. The reconstructed timing is investigated for the proton generated in the vp — np
reaction. The time of flight determined from the n missing momentum is compared with that from the
measured timing with these PS’s. Here, the time of flight is calculated as a delayed time from the arrival
of the particle having the velocity of the speed of light. The time of flight from the timing measurement
is given by the average of the measured timings of the proton arrival with SPIDER PS’s t5, and that
between two photons from the 7 decay detected with BG ¢,. The 1 missing momentum and the flight
length gives the time of flight of the proton to the SCISSORS III ¢,, and the flight length gives that of
the particle having the speed of light ¢.. Fig. 10 shows the correlation of the time of flights given by the
timing measurement ts, —t.-, and the 77 missing momentum ¢, —t.. The measured timing is earlier than
that from the n missing momentum, suggesting the pulse-height time-walk correction is not appropriate

for the proton.
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Fig.10. a) Correlation of the time of flights given by the timing measurement ts, — t,~ and by
the 17 missing momentum ¢, — t.. The measured timing is earlier than that from the n
missing momentum. b) Mean and width of the time of flight distribution given by the
timing measurement as a function of that from the n missing momentum.

The time of flight distribution given by the timing measurement is estimated for every 0.2 nsec of
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that from the 1 missing momentum. The mean and width of the distributions are obtained by fitting
with a Gaussian function. Fig. 10b) shows the mean and width of the time of flight distribution given by
the timing measurement ts, — t~ as a function of that from the 7 missing momentum ¢, — t.. The mean
and width behaves similarly for three layers. The mean for the timing measurement ug, for each layer

is fitted with

(0.151 & 0.004) (6¢)2 + (0.098 + 0.018) 5t + (0.454 + 0.022) for layer 1,
psp(t) = ¢ (0.165 £ 0.002) (6¢)2 + (0.028 + 0.011) 5t + (0.475 + 0.015) for layer 2, and (2)
(0.136 + 0.003) (6t)2 + (0.189 + 0.015) 6t + (0.360 + 0.019) for layer 3

where 0t = t, — t. is the time of flight determined from the 7 missing momentum.

Here, we assume that the time of flight determined from the 1 missing momentum 6t = t,, — t. is
correct. The precise time of flight of the proton is reconstructed from the difference of measured timings
tsp — to by using the inverse functions of Eq. (2). Fig. 11 shows the timing and momentum resolutions
where the time of flight is determined from the timing measurement. The resolutions obtained here is
rather the upper limits of them since the time of flight given by the n missing momentum is influenced

by the energy and position resolutions of BG.
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Fig.11. Timing and momentum resolutions where the time of flight is determined from the tim-
ing measurement by using the inverse functions of Eq. (2).

The timing calibration of CsI crystals for SCISSORS III is made by using +’s. The reconstructed
timing is not also good for the proton because the particles which do not generate the EM shower. The
reconstructed timing with SCISSORS III is investigated in the same way for SPIDER. Fig 12 shows
the correlation of the time of flights given by the timing measurement ts, — ¢, and the n missing
momentum ¢, — t.. The measured timing is later than that from the n missing momentum, suggesting
the propagation of the scintillation lights are slower than the development of the EM shower.

The mean and width of the time of flight distributions given by the timing measurement are ob-
tained by fitting with a Gaussian function for every 0.2 nsec of that from the 1 missing momentum.

Fig. 10b) shows the mean and width of the time of flight distribution given by the timing measurement
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tse — ty~ as a function of that from the 7 missing momentum ¢,, — ¢.. The mean for the timing measure-

ment g, is fitted with
se(0t) = (1.325 £ 0.003) 6t — (0.124 £ 0.009) 3)

where 6t = t, — t. is the time of flight determined from the n missing momentum.

The precise time of flight can be obtained from that given by the difference of the measured timings
tse — to by using the inverse functions of Eq. (3). Fig. 13 shows the timing and momentum resolutions
where the time of flight is determined from the timing measurement of SCISSORS III. The resolutions

obtained here is also rather the upper limits of them.
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Fig.13. Timing and momentum resolutions where the time of flight is determined from the tim-
ing measurement by using the inverse functions of Eq. (3). For comparison, the timing
and momentum resolutions from SPIDER information are also plotted.
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The time of flight reconstruction for the proton discussed in this subsection works very well. Fig. 14
shows the missing mass Mx distribution for the 4p — pX reaction as a demonstration. Here, the
reaction of interest is yp — w7~ 7%p and the #° — ~~, the proton, and two charged particles detected
events are selected. The proton momentum is reconstructed from the time of flight discussed in this

subsection. The 17 and w meson peaks are clearly observed. The details of the analysis on the precise

time of flight determination for the proton are described elsewhere [36].
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Fig.14. Missing mass Mx for the vp — pX reaction. The reaction of interestis vp — 7+ 7~ #p,

and the events with the 7 — ~+, the proton, and two charged particles are selected.
The left and right panels show the missing mass distributions where the four momen-
tum of the proton is reconstructed from the SPIDER and SCISSORS III informations,

respectively. The n and w meson peaks are clearly observed.

To get the precise time of flight for the neutron, the difference of the measured timings with SCIS-

SORS III between the neutron and proton by using the vIN — 1IN reaction events from the data taken
for the deuterium target. Fig. 15 shows the mean and width of the time of flight distribution of the

nucleons as a function of the momentum. The difference pu = p,, — 1y, of the means for the neutron and

the proton is fitted with
4

»? px (5.040.3)
b = (3.78 £ 0.64 — X
npx) = ) exp < (310.8 + 11.2)° ) i ( 1376.2 £ 31.6 >

as a function of the nucleon momentum px given by the n missing momentum.
The difference of the measured timings for the same momentum nucleons is determined. The pre-

cise time of flight for the neutron can be obtained from Eqgs. (3) and (4). Fig. 16 shows the resolutions
of the time of flight and the momentum for the neutron as a function of the momentum. The poor res-
olutions are thought to come from the ambiguity of the depth of the position that the (n,p) or (n,~)

reactions take a place. The details of the analysis on the precise time of flight determination for the

neutron are described elsewhere [37].
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§6. Summary

The 8 series of meson photoproduction experiments with FOREST has been carried out in 2008
and 2009. The main purpose of the FOREST experiments is to study a nucleon resonance N*(1670),
which is a candidate of antidecuplet pentaquark baryons via 1 photoproduction on the neutron. A huge
amount of the events have been collected at the STB circulating energy of 1200 MeV: 1.88 G for the
hydrogen and 2.02 G for the deuterium targets. The energy and timing calibrations of all the detectors
are finished. The software alignment of SPIDER and the estimation of the nucleon detection efficiency
is completed. The precise determination of the time of flight for the nucleon is also developed. The total
and differential cross sections for the vp — np and vd — npn reactions will be obtained from these data

in the near future.
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We will report the current status of NKS2 experiments. In this report, we focus the results of LNS
experiment number 2633, 2638, and 2658. Those are including a commissioning run after upgrading of

inner detectors of NKS2 and data taking of physics run.

§1. Introduction

The elementary photo-strangeness production process had been intensively studied based on the
high-quality data of the charged kaon channel, v + p — K+ + A(X°). However, there was no reliable
data for the neutral kaon channel v + n — K% + A and the theoretical investigations suffer seriously
from the lack of the data. In order to have reliable data for the neutral kaon photo-production data,
we have been putting an effort to measure the v + n — K% + A process in the 7+ 7~ decay channel,
using a liquid deuterium target and a tagged photon beam in the threshold region at Laboratory of Nu-
clear Science, Tohoku University. We have already taken exploratory data quite successfully with use
of Neutral Kaon Spectrometer (NKS) at LNS-Tohoku in 2003 and 2004. We intend to extend the previ-
ous experiment by considerably upgrading the original neutral kaon spectrometer to a completely new
neutral kaon spectrometer (NKS2), fully replacing the spectrometer magnet, tracking detectors and all
the trigger counters. The new spectrometer, NKS2, has significantly larger acceptance for neutral kaons
compared with NKS, particularly covering forward angles and much better invariant mass resolution.
The data taking was done in 2006 and 2007 and its results will be shown in the doctoral thesis of Kenta
Futatsukawa.

We started NKS2 upgrade project after we had finished the construction of NKS2 spectrometer.
The goal of the experiment is further investigate strangeness photo-production via the neutral channel

in the threshold region. In this particular proposal, we aim to measure
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Fig.1. Angular dependence of A polarization in Lab. frame in spectator kinematics. The unit of
horizontal axis is degree. The calculation is done by P. Bydzovsky.

e K2 -+ A coincidence events with reasonable statistics, and

e Determine the sign of A recoil polarization.

A coincidence measurement of K° 4 A requires four track re-construction of decay particles, be-
cause we will use decay mode of K} — n* + 7w~ and A — p + w~ for the event. In order to maximize
the acceptance for the four track events under the NKS2 setup, we had designed and installed a new
inner detector package, Vertex Drift Chamber (VDC)and Inner Hodoscope(IH). The VDC allows us to re-
construct 3D trajectories in the target region with its 8-layer stereo-wire configuration. The geometrical
acceptance for K° + A coincidence measurements is expected to increase by a factor of about 7 compared
to the Neutral Kaon Spectrometer 2 (NKS2) prior to the upgraded since the two out of four tracks can be
identified and momentum-analyzed, requiring detection of the two particles only by the inner detector
system.

The advantages of measuring A and K concurrently, in the v +n — K° 4 A reaction are as follows:
Firstly, it will allow the derivation of the invariant masses of the kaon and lambda hyperon simulta-
neously and uniquely identify the reaction. The second advantage will be the elimination of a Fermi
motion correction of the neutron in deuteron. Also, the reaction plane will be well defined ensuring that
the A recoil-polarization can be measured. The polarization measurement of single Lambda hyperons,
particularly its sign determination, would give us enough information as suggested by recent calculation
shown in Fig. 1. Lastly, A events from ~ + p and « + n and reactions can be separated; This shall reduce

possible background contamination from incorrectly combined pions.
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§2. Experimental Setup

The experimental setup consists of beam line and the NKS2 spectometer. There are tagged photon
system to measure photon energy and timing and a sweep magnet which removes background.

The NKS2 consists of an array of detectors centered on a target housed in a vacuum chamber. The
target is surrounded by a Vertex Drift Chamber (VDC) and a plastic Inner Hodoscope (IH), which is the
start trigger for the time of flight, and both are enclosed in a Cylindrical Drift Chamber (CDC). Those
detectors reside within the poles of a dipole magnet with 680 mm gap. An outer plastic scintillator ho-
doscope (OH), the stop trigger for time of flight measurement, is then placed outside the drift chambers.
Lastly, in order to improve trigger efficiency, and reduce the level of background as a result of pair pro-
duction from the photon beam, scintillator Electron Veto (EV) detectors are installed on a zero degree
plane perpendicular to the beam line. The pair produced e*e™ are only generated in the forward direc-
tion. However, only the EV counters setup at the backward angles are used in the trigger to minimize

the bias to the acceptance of the NKS2 spectrometer at the forward angles.

§3. Inner Detectors and Its Commissioning
The inner detectors consist from Vertex Drift Chamber (VDC) and Inner Hodoscope (IH). We applied

the beam time for NKS2 upgraded including a commissioning of the inner detectors. The proposal was

20 cm

Fig.2. The schematic view of NKS2 after upgrade. This is a slice of the spectrometer on the
beam plane. Inner detectors are replaced.
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accepted and the experiment is assigned as No. 2633 (test of NKS2 vertex chamber) and No. 2638 (Study
of Neutral Kaon Photoproduction on Deuterium Target by NKS2). We found some problems on chambers
during the beam time.

e Oscillation on read-out card of chambers

e Strange TDC distribution of chambers
We decided to take an time to study and to fix the problem before starting of physics run. We applied
the other beam time for the test (No. 2658). In the following subsections, we describe the inner detectors

(VDC and IH) and result of test experiment.

3.1 VDC

The Vertex Drift chamber is an inner detector. It is positioned inside Cylindrical Drift Chamber
(CDC) and due to its unique design, will be capable of performing three-dimensional tracking. The
diameter of the vertex drift chamber is 330 mm with a height of 506 mm and the solid angle is about
three times of CDC. The detector is composed 626 sense wires placed at stereo angles such that they
create eight layers in a U,U’,V,V',U,U’, V, V' structure. The cells are trapezoidal in shape with a
half-cell size of approximately 4 mm. Each sense wire was made from gold plated tungsten with a
diameter of 20 microns. Figure 3 is a picture of VDC. Table 1 shows the cell size and stereo angle for all
of layers.

The choice of drift gas is Ar+Ethane (50:50) which is also the same gas choice of CDC. A cosmic-ray
test of the VDC performance yielded a tracking efficiency > 99% for all layers. A position resolution
(residual to track) ranging from 150—200 pm as shown in Fig. 4.

Fig.3. Picture of VDC. It is placed sideways for maintenance.
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Table 1. VDC cell size and wire specifications.

group layer half-cell size half-cell size stereo angle  number of
number number radial [mm] azimuthal [mm] [deg] sense wires
1 1 (U) 4 3.89 6.35 59
2 2 (1) 4 4.31 7.03 59
3 4 (V) 4 3.88 7.72 72
4 3 (V) 4 4.23 841 72
5 5(@U) 4 3.88 9.09 85
6 6 (U) 4 4.18 9.77 85
7 7 (V) 4 3.92 10.44 97
8 8 (V) 4 4.18 11.12 97
TOTAL 626
= 250r
S B
= L
[ ] L
— L
5 200"
- i M
E i n\'/‘\f/"/\\'
S 50 T
O i
8 - Threshold
o 100 | —— -6 [V]
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50 '
: - 3[V]
i —~-2[V]
0 | \ \ \ \ I I I
1 2 3 4 5 6 7 8

Layer Number

Fig.4. Vertex drift chamber (VDC) position resolution for all layers (1-8), as a function of thresh-
old setting. A position resolution (residual to track) is less than 200 pm.

A read-out card, GNA-220, is designed to fit a space at inner detector region. GNA-220 has 32
channel inputs/digital outputs and used an ASD chip (SONY CXA3183Q). The threshold voltage V5, =
-1 V corresponds to 8.93 x 10~3 pC in GNA-220. On the other hand, the charge of the VDC signal is
estimated about 0.14—0.16 pC. That means that the VDC signal will not be killed even if we set the
maximum threshold value -7 V.

We designed symmetric wire alignment in VDC. Therefore, there is the wire material on the beam
line in upstream of the target. In order to increase the data acquisition capabilities the wires in the
upstream direction along the beam line have been removed. As the result, the order of material in

upstream region is similar with before.
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3.1.1 Inner Hodoscope (IH)

The inner hodoscope counter has also been re-designed. The size of each segment was specifically
designed considering the probability of multiple hits on one segment and the PMT beat operational
singles rate. To satisfy the wanted requirement of a less than 2% probability of multi-hits and a sin-
gles rates < 200 kHz. The reduction of multiple hits on one counter is necessary to avoid discarding
ntw 7~ p events, where two or more decay particles transverse the same IH segment.

A GEANT4 simulation of the detectors performance was undertaken. The simulation conditions
used bremsstrahlung photons is in the energy range of 5MeV to 1.2GeV. The results were a singles rate
of 160 kHz at a tagged photon rate of roughly 2MHz. The inner hodoscope is composed of 20 segments
consisting of 5 mm thick plastic scintillators with a height of 380 mm, light guides and photomultipliers
that are arranged to enclose the VDC. The angle coverage of IH is shown in Table 2. Figure 5 shows the
IH counters mounted on VDC body.

It is essential for providing the initial trigger signal for Time-Of-Flight particle identification. We

Fig.5. Picture of IH viewed from downstream side. The counters are mounted on VDC body.
The PMT’s are connected both edge of the scintillator, excepting 1L and 1R. Those have
only one side read-out to avoid hit of photo beam.
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Table 2. IH angle coverage.

Segment ID angle coverage [deg] Segment ID angle coverage [deg]

L1 4 —+4 R1 +4 — 4
L2 4-10 R2 -4 —-10
L3 10 — 18 R3 -10 — -18
L4 18 — 30 R4 -18 — -30
L5 30 — 54 R5 -30 — -54
L6 54 — 78 R6 -54 — -78
L7 78 — 102 R7 -78 — -102
L8 102 — 126 R8 -102 — -126
L9 126 — 144 R9 -126 — -144
L10 144 — 162 R10 -144 — -162

require that will be operational within a strong magnetic field. The final design utilizes a fine mesh dyn-

ode type photomultiplier, HAMAMATSU H6152-01B, that operates on a negative high voltage setting.
The new IH has two read-out and it makes us better energy deposit information than one side read-

out, because we want to make particle identification by dE/dx instead of TOF for charged particles that

will not make a hit on OH. Its capability is studied from data and the results shows that it is possible [1].

3.2 Results from the commissioning run
In this sub-section, we will explain what we tried in the commissioning run and its results. The

summary of the commissioning run and related works are shown in the following list.

e 2008/Sep
The first commissioning run of VDC (LNS Exp. No. 2633).
e 2008/Nov and Feb
Physics data taking with Liq. D2 target (LNS Exp. No. 2638).
e 2009/Jun
VDC stand-alone-test with changing the gas mixture with ethanol (LNS Exp. No. 2658).
e 2009/Summer shutdown
Ground toughness modification of the chambers.
e 2009/Sep
Beam rate study after the ground toughness (LNS Exp. No. 2658).
e 2009/Feb to Mar
Checking AMT-VME control programs and modification of programs. Test for the effect of modifi-
cation of AMT-VME with using pulse generator signal.
e 2010/Apr
Beam rate study after the modification of the AMT-VME DSP program (LNS Exp. No. 2658).
e 2010/Jun and Jul
Trigger test as a function of beam rate and physic run (LNS Exp. No. 2638).
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In 2008, we met two problems of chambers. The first one is the oscillation of read-out card (we
call it Amp-Shaper-Discriminator (ASD) card). In the situation of NO BEAM, the oscillation level was
low and acceptable. The oscillation of CDC in some channels, however, occurred during data taking.
Additionally, we found many channels of VDC has larger number of hit in higher beam rate. Figure 6
shows the hit patter on VDC with different threshold of ASD card. We thought that all of phenomena
was due to a oscillation that appeared in high beam rate (more than 1 MHz).

That makes an bad effect to DAQ rate because a large event size makes a rate of trigger accepted
lower due to longer read-out time from the TDC module. The worst case of DAQ efficiency was about 10
to 20% with 2 to 3 MHz of beam rate. The second problem is that we see a distribution of TDC in a region
of large value. We expect that the TDC distribute only in a rage of 0 to a channel corresponding to a
common stop timing. At that time, it was dominant in the collaboration that the unexpected distribution

was also due to a oscillation.
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Fig.6. Layer hit patter of VDC from run 2009/Sep. Horizontal axis is the wire number of each
layer. The vertical axis is total number of hit in a run. Data from different three set-
ting of threshold are shown. We see the large number of hit around center and edge of
histogram (corresponding to beam line). However, layer 6 has a bump around side of

chamber (around channel 20 to 30) and its region is expected lower single rate.
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In the beam time of 2009/Jul, we tested VDC as a stand-alone system. VDC is mounted to CDC
body in the spectrometer. We needed to separate the origin of problem. Because there was a discussion
that the VDC had a oscillation and it make CDC something bad with beam. Additionally, we tested an
ethanol effect to the oscillation following a suggestion from one of KEK E325 collaborator (They could not
operator a small size of drift chamber without ethanol). The results say that VDC itself was quiet with
higher beam rate (3 MHz) and we didn’t see larger size of background under the TDC peak. However,
TDC distribution showed two continuum around 10° and 10° of channel number.

In the summer shutdown, we exchanged CDC shield plate on the top side and added shield cover
for each ASD card to make the ground line more toughness. We didn’t see any oscillation around lower
limit of the threshold setting of ASD card.

In the beam time of 2009/Sep, we test whole NKS2 system. This is the test for beam rate dependence
of DAQ rate. The situation of large event size was not change even if we had made a better ground line
connection of ASD card.

We checked number of hit distribution for two TDC region. One is in the expected range, and the
other one is in unexpected range. Figures 7 and 8 show the number of hit per event as a function of wire
number for each layer. This data is taken with normal trigger for physics run with 3 MHz of beam rate.

The total number of hit (solid circle) shows a bump on not only VDC but also CDC. After TDC range
cut, the distribution with a range of TDC channels expected (solid square) show reasonably smooth. It
is clear that the unexpected region (solid triangle) made large event size.

The TDC distribution is shown in Fig. 9. The region which we expected hit in TDC channel is 0
(common stop timing) to about 1300 (trigger timing). We see two continuum in the whole TDC distri-
bution (0x10000 to 0x1FFFF and 0xF0000 to OxFFFFF). We found that those region was corresponding
to negative TDC region due to record of hit after common stop. To remove those record in the module,
we modified a DSP program in AMT-VME, that set some parameters of the AMT chip, formatted data
from the chip, and send to a VME memory. In the original DSP program, the time window was fixed and
cover negative time region (about 50 us!). A new program has a capability of changing a time window
by setting values on VME memory. The summary of problem and solution is reported in Ref. [2].

We had test beam time for trigger rate study to check the effect by modification of AMT-VME module
in 2010/Apr. Before the modification of AMT-VME, the trigger accepted is saturated about 300 Hz and
the DAQ efficiency was singularly bad. After modification, it is achieved to have 90 (80)% of DAQ
efficiency at 2 (3) MHz of beam rate (see Fig. 10). The trigger configuration of the test included signal
of Electron Veto. When we included electron veto signal in the trigger, we lose an acceptance in forward
region and it might make a bias in the data.

Figure 10 shows an effect of Electron Veto (EV) in the trigger after the modification of AMT-VME.
We tested two combination of triggers. The first one used all of EV counters (EV1 to EV4). The second
one used EV counters of upstream side (EV3 and EV4).

When we used all of EV counters in the trigger, the DAQ efficiency is about 90% at beam rate of 2.0

MHz. However, the charged particle veto in the downstream side will kill pion and proton in the data
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Fig.7. Layer hit patter of VDC. Horizontal axis is the wire number of each layer. The vertical
axis is number of hit per event.

and make a significant bias in data. We decided to use only counters in the upstream side.

The use of the upstream electron veto counters EV3 and EV4 at the trigger level shows a saturation
for the trigger accepted at 2.5 kHz. This occurs at an requested trigger rate of 4 kHz. A data acquisition
efficiency of approximately 70% can be achieved at a tagged photon beam rate of 2.0 MHz. This is
a significant improvement. The NKS2 spectrometer prior to DAQ improvements had the same DAQ

efficiency at 2.0 MHz.
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§4. Data Taking of Physics run

After substantial effort, we fixed two problems related chamber and AMT-VME module. The physics
production run data were taken in 2010/Jul, Sep and Oct. The beam time of 2010/Jul was assigned as
LNS Exp. No. 2638. The run of 2010/Sep and Oct are as No. 2716 and 2731, that are accepted in
FY2010.

In the run of 2010/Jul and Sep, the duty factor of beam cycle is about 50 to 60%. Under strong
support of ELPH, we took the data with 80% of the duty factor in 2010/Oct. The summary of number of
tagged photon and trigger accepted is shown in Table 3.

Before starting of 2010/Sep and Oct runs, we did quick analysis of a part of 2010/July data to check

number of A. The number is consistent with expected and shown in PAC meeting in 2010/Aug.
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Fig.11. NKS2 data acquisition performance as a function of Tagged photon beam rate. The
curves show the different combination of electron veto introduced into the main trigger
logic. The data we used all of electron veto counters (EV1 to EV4) are shown by solid
circles. The open square are data we used the upstream EV3 and EV4 combination
only. The top-left figure is the DAQ efficiency as a function of the tagged photon beam
rate. The top-right figure presents the trigger requested rate. The bottom-left shows the
trigger accepted rate. The bottom-right illustrates the trigger accepted rate verses the
trigger requested rate.

Table 3. Statistics of physics run.

run period Target Total number of tagged photon Total number of trigger accepted

2010/Jul  Liq. Dy 0.12 x 1012 0.16 x 10°

2010/Sep  Liq. Hy 0.31 x 1012 0.31 x 10°

2010/Sep  Liq. Dy 0.89 x 1012 0.64 x 10°

2010/0ct  Liq. De 2.77 x 1012 1.72 x 10°
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We carried out experiments to investigate the double pion photoproduction on the deuteron using
a photon beam in an energy range from 0.67 to 0.92 GeV. Charged particles were detected by use of
Neutral Kaon Spectrometer 2 (NKS2). Events that include three charged particles have been selected
and their masses were obtained from the measured momenta and velocities. In order to identify the

~d — mtn~pn and vd — w7~ d events, the data calibration are in progress.

§1. Introduction

Double pion photoproduction on the proton and deuteron had been investigated in the photon energy
range from 0.8 to 1.1 GeV at LNS [1]. In that study, the cross-section for the vd — ATTA~ was observed
and its contribution was not negligible contribution to the cross section of total photoabsorption. The
quasi-free process was found to be smaller than that of the free proton. It suggests that the contribution
of the non-quasi-free process is not small for the photon absorption by the bound nucleon.

The experiment performed in lower energy region than previous one will be useful for the extension
of our understanding of the photoabsorption on the deuteron as bound nucleons in the wide energy

region. We focused on the non-quasi-free process, especially the reaction in which the deuteron remains
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in the final state, vd — w"nw~d. The cross section was predicted to be ~7 ub at the photon energy of
E, > 0.5GeV [2].

§2. Experiment and Current Status of Analysis

The experiment in a photon energy of 0.67 < E, < 0.92 GeV was carried out using a liquid deu-
terium target. The events with two or more charged particles were measured with the Neutral Kaon
Spectrometer2 (NKS2). The total number of the irradiated photon counted by the STB Tagger in the
experimental period, lasting approximatly two weeks was 9.15x10'1. For this statistics, the expected
number of event for vd — 77~ d reaction is 4 x 103 for the cross-section of 7 ub. The assumed ac-
ceptance which included the analysis efficiency was 0.01. Figure 1 shows the distribution of squared
mass of observed particles. Mass square regions for m(—0.5-0.3[(GeV/c?)?]), p (0.5-1.8[(GeV/c?)?]) and d
(1.8-5.5[(GeV/c?)?]) are denoted with arrows in the figure.

We are presently working to improve the quality of detector calibrations and plan to verify our

analysis method.

Pi(h)n Proton Deuteron

Counts
T T T TTTTT

10°

10

| AL {H{ IH“I
-1 0 1 2 3 4 5 6

Mass Square[(GeV/cz)Z]

Fig.1. Mass square distribution of measured particles, m(—0.5-0.3[(GeV/c?)?]), p(0.5—
1.8[(GeV/c?)?]) and d(1.8-5.5[(GeV/c?)2]).
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We performed feasibility tests for positron counters for the muon decay using the positron beam at
GeV-v beam line. Two types of counters are developed: a Cerenkov counter and a spindle scintillation
counter. These counters are designed to be sensitive to the incident positron direction. Each counter
is tilted to the beam axis and the number of photon is counted. The angular resolutions of 3.8° and
14° are obtained for the Cerenkov and spindle counters, respectively. Based on these tests, the spindle

scintillator is fabricated for new muon spectrometer at RIKEN-RAL.

§1. Introduction

A new detector for muon decay positrons is essential in highly intense pulsed muon beam. Generally
in experiments using MeV muons, the muons are stopped at a sample or target and then decay positrons
was observed by counters surrounding the sample. A direction-sensitive counter enables us to identify
an initial positron direction. The muons that have stopped at the sample can be preferably observed
with this counter. However, it is difficult to investigate detector performance using positrons from the
muon decay in the pulsed muon source. The positron from the muon decay cannot be identified particle-
by-particle due to a high rate beam, in particular, just after the muon injection. The positron has a
continuous energy spectrum. It is emitted all around the target. Therefore, a performance feasibility
test have been performed with the positron beam at the GeV-+ beam line, LNS-Tohoku.

Two types detectors are developed on the basis of new ideas by improving existing techniques.
One is a Cerenkov counter. A picture of this counter is shown in Fig. 1 (al). They are composed of
acrylic block radiator (front 10x10 mm, back 50mm x50 mm, 50 mm length), a focusing mirror and a
photomultiplier tube (PMT, Hamamatsu H2150). If a positron is injected perpendicular to the front of
the radiator (Fig. 1 (a2)), photons are emitted along with the positron path. Part of these photons are
reflected at a side surface of the acrylic radiator, are directed in parallel to the initial beam, and then

are reflected by the mirror. They are focused at the PMT position. The focusing spot is squeezed with
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Fig.1. (al):photograph of Cherenkov counter. (a2):separation mechanism by a positron incident
angle in the Cerenkov counter. (b1l): photograph of spindle scintillation counter. (b2):
photograph of cross section of the spindle counter bundle.

slit. In contrast, if the positron is injected at some angles to the front of the radiator (Fig. 1 (a2’)), such
photons are reflected with some angles to the initial beam. As a result, all photons are not focused at
the PMT position. If these difference is observed, an initial direction of positrons can be identified. Since
an output pulse width in these Cerenkov radiation is expected to be shorter than that of a scintillating
light, this method can reduce detector dead-time in the high intensity beam.

The other is a spindle scintillation counter. A picture of this counters is shown in Figs. 1 (b1) and
(b2). A single wavelength shifter fiber (WSF) and a clear fiber is used as a compact light guide in-
stead of a bulky acrylic light guide. Figure 1 (b1) shows the counter, which is composed of a scintillator
(14x14x50 mm?), a 75 cm WSF (Kuraray Y-11(200)M-S 1 mm) and a 16ch multianode photomultiplier
tube (MAPMT, Hamamatsu H6568-10, UBA type). In this test, 16 scintillators are bundled (Fig. 1 (b2)).
The spindle scintillator is pointed at the sample, so that positrons from the sample position penetrate
through the longest path and background particles from outside of the target penetrate through a path
shorter than the former path. If an appropriate threshold level of output signals from the MAPMT is
provided in proportion to the light output, we can preferably observe decay positrons only from the sam-
ple direction and reject background particles. In this method, an instantaneous beam rate per counter
can be reduced by increasing the number of counters although dead-time of the scintillation counter is

not shorter than that of the Cerenkov counter.

§2. Experiment

After a preliminary test at the front of the NKS2 spectrometer, a beam test was performed at
the GeV-y beam line. These counters were tested in parallel. Momentums of p.=500 MeV/c and
Pe=252 MeV/c positrons were used for the Cerenkov counter and spindle counter tests, respectively.
A schematic view of the setup is shown in Fig. 2. The 500 MeV/c positron penetrated a beam defining
counter array in front of the Cerenkov counter to define the initial position. The Cerenkov counter was

tilted to the beam axis from .= -20° to 20°. The number of photon was counted for each angle with PMT.
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Fig.2. Setup at the GeV-y beam line. For the Cerenkov counter, the beam defining array coun-
ters was installed in front of the Cerenkov counters. The array counter was composed of
10 mm-long and 5 mm-thick plastic scintillators. For the spindle counters, the counter
bundle is composed of 16 spindle scintillation counters. Two beam defining were installed:
the smaller scintillator is installed for identifying hit position at the spindle counter bun-
dles.

As for the spindle counters, the 252 MeV/c positron penetrated two beam defining counters. A smaller
counter was almost the same size as the cross section of spindle counter. The smaller counter was used
to identify an incident point of the beam. They were tilted at 8 = 0°, 5°, 10°, 17° and 90°. The number of
photon was counted by MAPMT.

83. Results

The angular distribution of the light output is shown for the Cerenkov and the spindle counter.
Figure 3 shows the angular distribution of the photon using the Cerenkov counter when the slit is fully
opened, opened by half and fully closed. The number of photon rapidly decreases up to 10° and then
gradually decreases. The former component is composed of positrons that comes at a incident angle
around 0°. By fitting this peak, an angular resolution is estimated to be 3.8° if the slit is fully opened.

Figure 4 (a) shows energy deposit spectrum for each angle. The vertical axis in Fig. 4 (a) is normal-
ized by the average number of photons at 0°.Figure 4 (b) shows angular distribution of the peak energy
observed with PMT. Each error was estimated with a FWHM of a peak at each angle. The number of
photons calculated from the shape of the scintillator (14x14x50mm?) is also shown in Fig. 4 (b) with
a dotted line. These indicated that the calculated value (14x14x50mm?) is consistent with the experi-
mental value. If the threshold level were set at 0.8, we could observe positrons with the incidence angles

below 15° effectively. This results was also reported in Ref. [1].

§4. Summary and Prospects
We successfully measured the angular distribution of the light output for the Cerenkov and the spin-
dle counter. The angular resolutions of 3.8° and 14° are obtained, respectively. The Cerenkov counter is

required to be modified around a photon collection component. At present, it is easier to employ the spin-
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Fig.3. Angular dependence of the light output measured by the Cerenkov counter at
pe=500 MeV/c positron beam. When the slit is fully opened or opened by half, the num-
bers of photons observed with the PMT are plotted with a solid and dotted line, respec-
tively. The peak at the center was fitted with a Gaussian shown in a bold solid line. the
slit half-open data are not completed to the positive angle. Angular resolution is esti-
mated to be 3.8°.
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Fig.4. Result for the spindle counters. (a): Positron energy deposits in the scintillator at each
angle. A vertical axis is scaled by the number of photons at 0 °. (b) Angular dependence
of a peak position in each energy spectrum. Each error in the experiment was estimated
with a FWHM of the spectrum at each angle. The relative number of photons is shown for
14x14x50mm? and 10x10x50mm? scintillators with dotted and solid line, respectively.
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dle counter for observing a muon decay although the Cerenkov counter has a shorter angular resolution.
In practice, this spindle counter is employed for a new spectrometer at RIKEN-RAL [2, 3]. Since a tighter
constraint of the incident angle is required for the spectrometer, a thinner scintillator (10x10 x 50 mm?)
is employed. The calculated value is also shown in Fig. 4 (b) with a solid line. The angular resolution is

expected to be 7° at the same threshold level.
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We tested photon beams provided by the STB Tagger with STB electron energies of 820 MeV and
1000 MeV. Tagging efficiencies and energy spectra of bremsstrahlung photons were measured with a
lead glass counter. The average tagging efficiency was 0.48 for the electron energy of 820 MeV and
0.72 for 1000 MeV. The distributions of the tagging efficiencies with respect to the TagF segment were
uniform. They were sufficient property for the production runs of double pion photoproduction. The end-
point energy of the bremsstrahlung photon was estimated by fitting the bremsstrahlung cross section
formula to the ADC spectrum of the lead glass counter. The obtained endpoint energies were 814 MeV
and 1013 MeV for the electron energy of 820 MeV and 1000 MeV, respectively. The energy calibration
used for these measurements are based on the calibration for the electron energy of 1200 MeV using the
pion photoproduction events on the deuteron measured with NKS2. The estimated errors are ~ 10 MeV
for both electron energies. By considering the errors, the measured endpoint energies were in agreement

with the STB electron energies.

§1. Introduction
The deuteron have been used as a target to study reactions on the neutron because it is a loosely
bound system of the proton and the neutron. Most experimental data for the pion photoproduction on

the deuteron show the validity of the quasi-free view of the reactions. However, there exist some ex-

*Present address: Division of Nuclear Data and Reactor Engineering, Nuclear Science and Engineering
Directorate, Japan Atomic Energy Agency, Tokai, 319-1195

tPresent address: J-PARC Center, Japan Atomic Energy Agency, Tokai, 319-1195

tPresent address: Advanced Meson Science Laboratory, RIKEN Nishina Center for Accelerator-Based
Science, Wako, 351-0198



41

perimental results in the study of double pion photoproductions which show the difference between the
free proton target and the bound proton or bound neutron. We measured the total cross sections for
d(v,mTm~p)n and p(v, 7w p) reactions at Laboratory of Nuclear Science, Tohoku University (LNS-
Tohoku), with the Neutral Kaon Spectrometer (NKS) and the tagged photon beam provided by the STB
Tagger [5]. The contribution of the quasi-free process was derived by selecting the smaller momentum
regions of the undetected neutron in d(~, 77~ p)n, and the obtained cross section was roughly 60 % of
that for p(v, w7~ p) [1]. We also derived the measurable cross section for the simultaneous ATTA~ ex-
citation in the intermediate state of the non-quasi-free process of the d(v, w7 ~p)n reaction. Its energy
dependence shows a discrepancy from the previous experimental data and the theoretical calculations.
It is very interesting to measure these cross sections in the broad energy range.

We proposed experiments to measure the double pion photoproductions with the renewed Neutral
Kaon Spectrometer (NKS2), in the lower energy regions by setting the STB electron energy as 820 MeV
and 1000 MeV. The energy regions of the tagged photon beam provided by the STB Tagger were 550—750
MeV, 670 — 920 MeV, and 800 — 1100 MeV for the STB electron energy of 820 MeV, 1000 MeV and 1200
MeV, respectively. The energy regions were chosen so that they have overlaps with neighboring energy
regions. The range of the overlap is the energy which corresponds to roughly 20 tagger segments.

The STB electron energies of 820 MeV and 1000 MeV have not been operated and we performed
the study of the tagged photon beam. We have measured the tagging efficiencies and the energies of the

radiated photon. We report here the preliminary results of the analysis of the photon beam.

§2. STB Tagger

The STB Tagger is an internal tagging system installed in the BM4, one of the bending magnet
of STB. It consists of a position-adjustable radiator target (carbon fiber with the thickness of 11 puma),
an analyzing magnet (BM4), and two sets of arrays of scintillation counters (50 TagF counters and 12
TagB counters). The radiator target is located outside the electron beam orbit during the beam injection
and acceleration. It is inserted to the center of the electron beam orbit during the flat top period. The
insertion speed and position of the radiator target is tuned to obtain the constant photon beam intensity.
The coincidence of the suitable TagF and TagB counters selects the true trajectory of the recoil electron
from the bremsstrahlung of the circulating electron on the radiator target. The momentum acceptance of
one TagF counter is designed to be 6 MeV/c for the STB electron energy (Ey) of 1200 MeV. It corresponds
to the span of the photon energy AE., = 6MeV for the one TagF counter. The nominal energy range of
the tagged photon is from 800 to 1100 MeV for Ey = 1200 MeV. For lower electron energy, the energy
span and the energy range of the tagged photon (from E};’W to EEigh) can be obtained by scaling:

AE. = 6 x Ey/1200,

ENV =800 x Eo/1200,

EYiEh = 1100 x Eo/1200,
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where the unit of the energies for Ey, AE,, E};’W, and El}igh is MeV. The detailed description is found
elsewhere [5]. It was developed for providing the tagged photon beam to SCISSORS-I and NKS. Now,
NKS2 is settled on the beamline.

§3. Tagging efficiency
Tagging efficiency is the ratio between the number of photons which are irradiated on the target
and the number of recoil electrons which are detected with the tagger. We set a lead glass counter with
size of 150 x 150 x 300 mm? made from SF-5 on the photon beam line 9.5 m downstream from the radiator
target. It sufficiently covers the size of photon beam for the detection of the photon. We assumed 100 %
detection efficiency for it. The tagging efficiency can be obtained as:
szhoton

" N"¥(ON)- N"5(OFF)’

€

where ¢; is the tagging efficiency for i-th TagF counter; N iph(’t‘m, the number of photon detected with the
lead glass counter in coincidence with the i-th TagF counter; Nfag(ON ), the number of the hit on the
i-th TagF counter with the radiator inserted to the electron beam; and IV, Z.tag (OFF), the number of the
hit on the i-th TagF counter with the radiator target not inserted to the electron beam. Tagger OR signal
was utilized as the DAQ trigger and a low intensity electron beam (hit rate of the tagger as ~ 103 Hz)
was used for this measurement.

The tagger hit by the electrons scattered on the residual gas inside the accelerator vacuum pipe: Its
contribution was measured as N;*$(OF F) < 1073 N;*(ON) for every i and was negligible. The average
tagging efficiencies were 0.48, 0.63, 0.72 and 0.79 for electron energies of 820 MeV, 930 MeV, 1000 MeV
and 1200 MeV, respectively. Figure 1 shows e; for each Ey. The tagging efficiencies for all the electron

energies show sufficiently high and uniform distributions over all the TagF segment.
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Fig.1. Tagging efficiencies for the collimated photon beam with regard to the TagF hit segments.
The dot-dashed curve is for Ey = 820 MeV; the dashed curve, for Ey = 930 MeV; dotted
curve, for Ey = 1000 MeV; and the solid curve, for E, = 1200 MeV.

The most important factor to reduce the tagging efficiency is the loss of the photon beam by a

collimator. The collimator consists of five lead blocks of 100 x 108 x 50mm3 with a hole of 10 mm-
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diameter. It serves to suppress the beam halo but it also absorbs some fraction of the bremsstrahlung
photon with large emission angle. Because the angular distribution of the bremsstrahlung photon is
broader in lower electron energy, the collimated tagging efficiency is supposed to drop in lower electron
energy. For the measurement of uncollimated tagging efficiency, we placed another lead glass counter in
front of the collimator (2.8m downstream from the radiator target).

Figure 2 shows the tagging efficiencies for the uncollimated photon beam for Ey = 930 MeV and
Ey = 1000 MeV. The almost identical efficiencies larger than 0.9 were obtained for both E,;. As can
be seen, the collimator significantly reduces the tagging efficiency. The reduction ratio depends on
the Ej not on the photon energy. That is the natural consequence of the angular distribution of the
bremsstrahlung photon. Though the low tagging efficiencies for collimated photon beam is qualitatively
as our expectation, the further studies with use of a Monte Carlo simulation or an analytic method are

needed for the quantitative explanation.
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Fig.2. Tagging efficiencies as functions of TagF hit segments for the uncollimated photon beam
with regard to the TagF hit segments. The dashed curve is for Ey = 920 MeV; and the
dotted curve, for Ey, = 1000 MeV.

§4. Photon energy spectrum

The response of the lead glass counter for the incident photon or electron is known to be linear to
their energy [2, 3]. We measured the energy of collimated photons in both tagged and untagged regions
with the lead glass counter as a DAQ trigger. The energy calibration of the ADC for the lead glass counter
was performed with use of the events with hits on the tagger. The peak in the pedestal-subtracted ADC
spectrum with hit on the 23rd and 24th TagF counters was set to the scaled energy from the calibrated
energy for Ey = 1200 MeV in the analyses for both Ey = 820 MeV and Ey = 1000 MeV data. We adopted
a new energy calibration obtained from inclusive analyses of the incident photon energy in the, single,
double, and triple pion photoproductions on the deuteron measured with NKS2 for Ey = 1200 MeV. The
obtained photon energies for all these reactions for each TagF segment are consistent within the statistic
errors. The photon energy of each TagF segment was determined by the error weighted average of the

results for these reactions. This analysis contained the smaller statistic errors than our previous energy
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calibration performed with use of single pion photoproduction (vd — = pp) on the deuteron with the
NKS2 [4].

In Fig. 3, the peak positions of lead glass ADC (pedestal not subtracted) fitted with Gaussian
with respect to the TagF segment and the result of linear regression are shown. The linearity of the
peak position to the TagF segment can be seen. Knowing the linearity of the tagged photon energy to the

TagF segment, the linearity of the lead glass response was reassured and the energy calibration between

H{

the lead glass ADC and the photon energy was obtained.
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Fig.3. The peak positions of the lead glass ADC with respect to the hit TagF segment is shown

in (a) and the difference from the fitted line is shown in (b) for Ey = 1000 MeV. The peak
position was obtained by fitting the Gaussian function to the +20 region of the ADC
peaks.

Figure 4 shows the energy spectra of the collimated photon beam obtained from the calibrated lead
glass ADC spectra for Ey = 1000 MeV As can be seen in the figure, the energy spectrum without TagF
hit shows a tail above the endpoint energy of 1000 MeV. The energy spectrum with hit on TagF1 has a
similar tail. It is considered as the effect of the response function of the lad glass. It can be well fitted
with use of the sum of two Gaussian functions: one for the main peak and the other for the tail. The
sum of fitted Gaussian function is used for the simulation of the response function of the lead glass to
the high energy photon.

Figure 5(a) and (b) show the energy spectrum for E; = 820 MeV and E, = 1000 MeV, respec-
tively. They are fitted with the bremsstrahlung cross section for the carbon nucleus (solid line) and the
folded curve of the bremsstrahlung cross section by the above explained response function (dashed line).
The nonscreened bremsstrahlung cross section differential in photon energy with Coulomb correction
was calculated with Formula 3CN in Ref. [6]. The screened cross section differential in photon energy
with Coulomb correction was calculated with Formula 3CS in Ref. [6]. We referred to Ref. [7] for the
screening functions ¢4 () and ¢2(7y) required in Formula 3CS. The « is the screening parameter of the
bremsstrahlung. The screening has to be considered for the region with v < 15; can be ignored for the
region with v > 15. The nonscreened region with the carbon target is only from 998.1 < k < 1000
MeV for Ey = 1000 MeV where k is the energy of the radiated photon. The spectra from the detection
threshold to 0.9E, were well fitted with the bremsstrahlung cross section. The tails of the spectra in
the energy region higher than the endpoint energy are were reproduced by the folded curves. The folded
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Fig.4. The total calibrated lead glass ADC spectrum shown together with the ADC spectrum
with TagF'1 hit (pale hatched histogram) and TagF48 hit (dark hatched histogram). The
ADC spectrum with TagF hit was fitted with the sum of two Gaussian functions as a
simulated response function.

curve slightly overestimates the photon yield in the lower energy region. The fitting parameters for the
function fitting was a scaling factor, an endpoint energy, a detection threshold and an energy spread of
the threshold. The threshold was expressed with use of normal frequency function (TMath::Freq(x) in
ROOT [8]). The fitting results with the folded bremsstrahlung cross section were much affected by the
shape of the response function. Because our response function is very preliminary, the fitting results
are not reliable. The obtained endpoint energy by the fitting with the bremsstrahlung cross section was
813.85 + 0.09 MeV and 1012.59 + 0.07 MeV for Ey = 820 MeV and E, = 1000 MeV, respectively. The
very small errors on these values are the only fitting errors. They are only reflected in the data points
with high statistics in the low energy region. The errors on the endpoint which come from the energy
calibration were +1.9 MeV for Ey = 820 MeV and +1.7 MeV for Ey = 1000 MeV. They may originate
from the statistic errors in finding the ADC peaks with Gaussian fitting. The systematic error in the en-
ergy calibration for Ey = 1200 MeV was estimated to be less than 10 MeV. The scaled errors, 6.8 MeV for
Ey = 820 MeV and 8.3 MeV for E; = 1000 MeV are also expected. Another energy calibration using the
result of the linear regression for the peak positions of the lead glass ADC was also tested. By adopting
the calibration, the endpoint energy shifted by —3 MeV and —6 MeV for Ey = 820 MeV and E; = 1000
MeV, respectively. These can be considered as ones of the systematic errors in this measurement. The
obtained endpoint energies were in agreement with the energy of the electron beam within errors.

The formulas 3CN and 3CS were obtained by integrating the differential cross section with respect
to the emission angles of the photon and the electron over the whole emission directions of them. How-
ever our measurement showed that the collimate limited the angular distributions of the photon, the
formula 3CS well reproduced theenergy spectra in the broad energy region. A detailed analysis of the
bremsstrahlung cross section and the Monte Carlo simulation will resolve this inconsistency.

We have also tried the measurement of photon energy by the use of the TOF of the proton in
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Fig.5. The calibrated lead glass ADC spectrum fitted with the bremsstrahlung cross section for-
mula (solid curve) and the bremsstrahlung cross section formula folded by the simulated
response function of the lead glass counter (dashed curve) for Ey; = 1000 MeV (a) and
E, = 820 MeV (b).

p(v,p)m° reaction and the neutron in n(vy,7w"n) reaction. The analyses of the photon energy from
the obtained data are still underway. This method with TOF measurement does not depend on the mo-
mentum measurement with NKS2 which suffers the difficulty and ambiguity from the determination of
the magnetic field. It will give the photon energy data with other kind of systematics and be important
information for our knowledge of the STB-Tagger.
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Beam Test of J-PARC K1.8 Beam Line Chambers

T.Takahashi!, T.N.Takahashi?, A.O.Tokiyasu?®, S.Adachi?, M.Endo*,
P.Evtoukhovitch®, H.Fujioka?, T.Hiraiwa?, K.Hosomi®, T.Ishikawa’,
Y.Igarashi!, K.Itahashi®, R.Kiuchi'*, K.Matsuda*, K.Miwa®, D.Mzhavia®,
D.Nakajima?, M.Naruki!, T.Ohtani®, V.Samoilov®, K.Shirotori®, H.Sugimura?,
Z.Tsamalaide®, and K.Tsukada®!

Unstitute of Particle and Nuclear Study (IPNS), High Energy Accelerator Research Organization
(KEK), Tsukuba, 305-0801
2Department of Physics, University of Tokyo Tokyo, 111-0033
3Department of Physics, Kyoto University, Kyoto, 606-8502
4Department of Physics, Osaka University, Toyonaka, 560-0043
5Joint Institute for Nuclear Research (JINR), Dubuna, 141980, Russia
8Department of Physics, Tohoku University, Sendai, 980-8578
"Laboratory of Nuclear Science, Tohoku University, Sendai, 982-0826
8Advanced Meson Science Laboratory, RIKEN, Wako, 351-0198

A 1 mm anode spacing MWPC and a 3 mm anode-anode spacing MWDC were developed for the
K1.8 beam line tracking detectors at J-PARC Hadron Facility. These detector were designed to measure
the beam trajectories with the accuracy of 0.2 mm (RMS) under the counting rates of ~10 MHz. The
detectors and their readout system were tested at test beam line of LNS. In this report, however, the
detectors and their readout system are described as well as the operation results at J-PARC beam line

in 2009.

§1. Introduction

In the Hadron Facility of J-PARC, particle and nuclear physics experiments using high intensity
secondary kaon beam, produced by 30 GeV primary protons with high intensity from Main Ring. Hyper-
nuclear physics is one of main subjects at Hadron Facility. K1.8 beam line can deliver mass-separated
charged particle beam such as kaon up to 2 GeV/c. A high-resolution beam spectrometer (K1.8BS) and
SKS spectrometer [1] with a large acceptance of 100 msr and high resolution of Ap/p=0.1%FWHM)
are equipped in the beam line. Therefore studies on hypernuclei of both S=—1 and —2, especially the
spectroscopy experiments, will be performed in this beam line.

To achieve the momentum resolution of better than 10~2 at K1.8BS, beam trajectories should be

measured with 0.2 mm accuracy at upstream and downstream of K1.8BS. To avoid multiple scattering

“Present address: Department of Physics and Astronomy, Seoul National University, Seoul, 151-747,
Korea
tPresent address:Advanced Meson Science Laboratory, RIKEN, Wako, 351-0198
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Table 1. Parameters of the K1.8 beam line MWPC (left) and MWDC (right).

MWDC

MWPC anode(a) diameter 12.5 pm
anode diameter 15 pm potential(p) diameter 75 pm
anode spacing 1.0 mm a-p spacing 1.5 mm
anode-cathode gap 3.0 mm a(p)-cathode gap 2.0 mm
effective area 2505 %80V mm? effective area 1907 %80V mm?
(window size) 305" x 100V mm?2 (window size) 240" x 100V mm?2
gas Ar(80):is0-C4H1¢(20) gas Ar(80):1s0-C4H10(20)

operation voltage operation voltage
cathode —2.55 kV cathode —1.20 kV
threshold of ASD 20 mV potential —-1.25 kV
threshold of ASD 40 mV

and energy loss straggling which degrade the resolution, these tracking detectors should be as thin
as possible. Intensity of K~ at 1.8 GeV/c is expected to be 1.4x10%/spill, where spill length (flat top)
is 0.7sec., in the Phase-1 goal. Taking into account kaon purity and kaon decays, particle’s rates are
expected to be about 10 MHz and a few MHz at the upstream and downstream of K1.8BS, respectively.
Considered that the maximum rate is 200 kHz/wire from our experience at Tsukuba, we adopted a 1 mm
anode spacing multi-wire proportional chamber (MWPC) for the upstream detectors and 3 mm anode-
anode spacing multi-wire drift chamber (MWDC) for downstream ones. Readout electronics for these
detectors has been also developed.

These detectors and their readout system were tested at LNS using positron beams at the test beam
line in July 2007 and May 2008. These beam tests were helpful for the modification and updating the
original design of these detectors and readout system. In this report developed MWPC, MWDC and their

readout system are described as well as the operation results at J-PARC in 2009.

§2. K1.8 beam line chambers and their readout system
2.1 1mm spacing MWPC

Geometrical and operation parameters are listed in Table.1 left. We choose gold-plated Tungsten
wire with Rhenium, whose diameter is 15 ym and a gap of 3 mm between the anode-wire plane and
cathode plane. This gap is made by using G10 frame with 3 mm thickness both for anode and cathode
frames. Cathode plane is made of the carbon-pasted aramid film, in which carbon ink is pasted with
20 pm thickness on the anode side of the base film of 12 ym. This carbon-pasted film cathode is strong
against the spark. In sprite of the continuous spark during 1 day, the conductivity was kept, although
the trace of the sparks were seen along the anode wire position. Number of the readout anode channels
is 256/plane. Since a surface field of the anode becomes higher in the edge region, anode dummy wires
are spread out of the window, in order that such anode wires are covered by the G10 insulator.

Amplifier-Shaper-Discriminator (ASD) cards with half-pitch connectors are installed both up and
down sides of the anode frame because of high density readout channels. Therefore the distance to the
next layer is chosen to be 20 mm. The MWPC comprises 6 readout layers with X-U-V-X-U-V configura-

tion, where X layer measures horizontal position, U and V are tilted by +15° to X. The structure of the
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Fig.1. (a) Layer structure of the 1 mm MWPC. (b) Layer structure of the 3 mm MWDC. (c)
Structure of anode and potential wires on the wire plane of 3 mm MWDC.

MWPC and ASD cards are shown in Fig.1 (a). In the operation, negative high voltage is applied to the

cathode side, while the anode wire is set to the OV.

2.2 3 mm spacing MWDC

The geometrical and operation parameters are listed in Table.1 right, while the structure are shown
in Fig.1 (b) and (c). The MWDC comprises 6 layers with the configuration of X-X’-U-U’-V-V’. The prime
means pair plane, in which wire position is sifted by half of the cell size, namely, 1.5 mm in order to
solve the L/R ambiguity. A number of the readout channels is 96(95)/layer, thus, three ASD cards can
be installed in one side of anode(wire) frame. Therefore the distance between the pair planes is 4 mm.
Cathode planes are made of the carbon-pasted film similar to MWPC, but carbon ink is pasted on the
both size of the base film, since the common cathode plane is used between the pair planes. Between
very narrow distance of 1.5 mm between anode and potential wires, high voltage is applied. Therefore
these wires near the soldering pads are insulated by the epoxy grue to prevent the spark as shown in

Fig.1 (o).

2.3 32channel ASD card
Anode signals are amplified, shaped, and discriminated by the ASD cards which are connected to

the MWPC or MWDC with the half-patch connectors of 68 pins as described in the previous section. 8
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Fig.2. Efficiency .vs. operation voltage measured with the low-intensity pion beams at K1.8
beam line. Left one is for 1 mm MWPC and right one for 3 mm MWDC.

ASD IC’s, which were originally developed for ATLAS Thin Gap Chamber with the time constant of 16
ns [2], are mounted on the both sides of the card (32channels/card). The LVDS logic signals are output
through an another type of half-pitch connectors. 4 power lines of +3.3V(0.82A), —3.0V(0.11A), threshold
(Vth) and GND are connected by the different connector. TEST Input of NIM signal can be sent to the

card for the test of the downstream module and time zero calibration.

2.4 MWPC Encoder — Encoder FINNESE on COPPER -

A DAQ front end module for MWPC readout was developed as a FINNESE board on COPPER
system [3], which was developed in KEK. This MWPC encoder accepts 32 channels LVDS or ECL inputs
from the same half pitch connector as a ASD card output one and trigger signal from the connector on
board (NIM) or Trigger-Card on COPPER system. The input logic level is latched by synchronizing with
100 MHz interal clock and sent to FIFO. By the trigger signal, data which match the selected time range
are sent to the readout buffer. Maximum delay time is 2.55usec, which is determined by the FIFO size.
These functions are realized by firm-ware of on-board FPGA (XILINX, Spartan3 XC3S400). It works
like a multihit TDC with 10 ns LSB and 2.55 pusec maximum range or a 1 bit flash ADC with 100 MHz.

Since no data compression is implemented, data size is proportional to the number of channels and

time window. In the production runs, we set the time window of 300 ns (30 records).

§3. Operation at J-PARC

Beam commissioning at K1.8 beam line was done from October 2009 to February 2010. A part of
the results on the beam line chambers are reported here. Figure.2 shows the efficiencies measured by
changing the cathode voltage using low-intensity pion beams. From this results we decided the operation
voltages as listed in Table.1.

MWPC data and the analysis method are described. Figure.3 shows MWPC encoder data of 1 layer
in an event. The horizontal axis means a record number of the encoder data, 1 record corresponding to
10 ns. The vertical one is a wire number, namely, position. The hits around the record number of 110 are

associated with the trigger of the event. These hits spread in 50-80 ns and 1-3 wires. These neighboring
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Fig.3. Encoder data of 1 layers for one event.

hits are called a cluster. A leading time and center position of the cluster are inputs of the track-finding
algorithm described later.

Distributions of the leading time (of the hit before clustering) at the different operation voltages are
shown in Fig.4. At —2.3 kV, where an efficiency is not sufficient, peak position is slightly delayed and a
width is larger than that for others. However, at —2.5 and —2.6 kV, where an efficiency is almost 100%,
the width is ~20 ns (FWHM). This width is well understood from the time constant of ASD (16 ns) and
the spread of the initial ionization. A board peak exists at ~60 ns later of the narrow one. As higher
voltage, a count of the broad peak increases. The wire which gives the broad peak is next to the wire
which makes the narrow one. Thus, this broad peak may be caused by the UV photon from the initial
avalanche.

Since two sets of the MWPC/MWDC are installed at the upstream and downstream of the K1.8BS,
there are 12 layers in each straight track regions of the upstream and downstream parts of K1.8BS.
Track-finding algorithm requires >4 hits in U and V layers and >8 hits in total out of 12 layers, and fits
these positions by a straight track with 4 parameters.

As the beam rate increases, a number of hits also increases. Accordingly a number of the combina-
tions to be fitted increases exponentially. At present this limits practically acceptable rate. The track
finding efficiency in the upstream part of K1.8BS (MWPC) was 80% in the highest rate condition in the
commisioning. Instantaneous rate was estimated from the accidental rates of MWPC. Due to the beam

profile, the rate depends both on the wire position and layer. The maximum rate was 130 kHz/wire at
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the first layer of the MWPCs. Total rate, integrated over the wires in the layer, was 8 MHz.

In summary, we have developed 1 mm spacing MWPC and 3 mm spacing MWDC for the K1.8 beam
line tracking detectors as well as their readout system. In the developments, beam tests were performed
twice at the test beam line in LNS. These detectors and readout system are in operation at K1.8 beam
line of J-PARC.
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The CALET project aims the investigation of high energy universe by observing cosmic-rays, which
will be carried out onboard the Japanese Experiment Module of the International Space Station. In this
experiment, we tested the detector performance of the « ray observation in the GeV region. A prototype
detector of CALET was irradiated to the GeVgamma beam from STB ring at LNB. We confirmed the
capabilty of detecting gamma-rayswe , and clarified that the experiment results are compatible with

simulations in the angular resolution and the energy resolution.
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Meson photoproduction experiments are planed to study nucleon resonances with a large solid angle
electro-magnetic (EM) calorimeter complex FOREST at Laboratory of Nuclear Science, Tohoku Univer-
sity. Three types of EM calorimeters are employed in FOREST: pure Csl crystals, lead scintillating
fiber modules (Lead/SciFi), and lead glasses. The energy resolutions of the Lead/SciFi and Lead/Glass
calorimeters are not so high, and the gaps of EM calorimeters lose the acceptance for the reactions of
interest. Thus, the replacement of FOREST with a homogeneous inorganic scintillators is desired.

A PbWO, (PWO) crystal is a candidate of a new EM calorimter. Although PWO has a good energy
resolution at high energies, it has a relatively small light output. Recently, we obtain an improved PWO
crystal which impurities are doped to increase the light output. The improved PWO crystal is expected
to have the better energy resolution due to the larger light output. In this report, the performance of an

improved PWO crystal was investigated by using momentum-analyzed 200-800 MeV /¢ positrons.

§1. Introduction

Meson photoproduction experiments are planed to study nucleon resonances with an EM calorime-
ter complex FOREST at Laboratory of Nuclear Science (LNS), Tohoku University. FOREST consists of
three types of EM calorimeters: pure Csl crystals, lead scintillating fiber modules (Lead/SciFi), and lead
glass Cerenkov counters. Although the pure CsI crystal is an inorganic scintillator and it has the better
energy resolution for several hundred MeV photons, the Lead/SciFi and a lead glass calorimeters have
poor energy resolutions. A 47 homogeneous inorganic scintillator calorimeter is desired for the precise
measurement of photoproduction reactions.

A lead tungstate PbWO4 (PWO) is one of the widely used inorganic scintillators. Compared to other
scintillating crystals, PWO has several superior characteristics [1]: a high density of p = 8.2 g/cm?,
a short radiation length of Xy, = 0.92 cm, and a fast decay time (= = 10 ns). Although PWO has a
good energy resolution at high energies, the energy resolution is not so high for several hundred MeV
photons [2] due to the small light output. The light output of PWO is only 4%—5% of that of BGO [3].
Recently, we obtain an improved PWO crystal which impurities are doped to increase the light output.
The improved PWO crystal is expected to have the better energy resolution due to the larger light output.
The beam test of an improved PWO crystal has been carried out with 200-800 MeV/c positron beams.
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§2. Experimental Setup

The energy resolution of an improved PWO crystal with a size of 22 x 22 x 180 mm?® was measured
at the positron beamline for testing detectors. The momentum of the positron beam ranges from 200 to
800 MeV/c. Since we have obtained one improved PWO crystal, a prototype calorimeter was constructed
being surrounded by 8 BisSigO15 (BSO) crystals with the same size of the PWO one. Each crystal was
connected to a 3/4-inch photo-multiplier tube Hamamatsu R4125GMOD. In order to compare the perfor-
mance of the improved PWO crystal to other one, the calorimeters which the central crystal is replaced
with a nominal PWO and BSO crystals with the same size of the improved PWO one were also tested.
Fig 1 shows the photo of tested three crystals.

Fig.1. Photo of tested three crystals: BSO, PWO, and improved PWO. The size of each is 22 x
22 x 180 mm?.

Positrons with energies ranging from 200 to 800 MeV/c were used as incident beams. To determine
the incident position of the positrons, a beam profile monitor (BPM) was used. The BPM consists of two
layers of scintillating fiber (SciFi) hodoscopes and 16 SciFi’s with a cross section of 3 x3 mm? were aligned
in each hodoscope. The upstream and downstream layers determine x and y positions from responding
fibers, respectively. Fig. 2 shows the experimental setup for the energy resolution measurement of the
calorimeters.

The trigger condition of the data taking system was described as
[ fiber OR] @ [y fiber OR], (1)

where ® stands for the coincidence of signals. The maximum trigger rate was 3 kHz and a fraction of

accidental coincidence events was negligibly small.

§3. Waveform

The waveform was measured with a digital phosphor oscilloscope DPO-4104 by using 589, 673, 744,
and 800 MeV/c positrons injected onto the central region (33 mm?) of each crystal. The photomultiplier
tube (PMT) used is the same for three crystals, and the same high voltage (—1169 V) is supplied to it.

Fig. 3 shows the measured waveform of three crystals by using 589 MeV/c positrons.
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Fig.2. Experimental setup for the performance measurement of an improved PWO crystal. It is
surrounded by 8 BSO crystals with the same size of the improved PWO one. The 16 x 16
scintillating fiber hodoscopes are placed in front of a calorimeter to determine incident
positions of positrons.

The light output was estimated by integrating the pulse height form —200 to +600 ns. Table 1
summarizes the relative light outputs of the improved PWO and BSO crystals to the PWO one. Since
the waveform of each crystal was taken once at every incident momentum, the deduced light output has
a fluctuation coming from the energy resolution discussed in §4. The improved PWO crystal has a three

times larger light output as compared with the nominal PWO one.

Table 1. Relative light outputs of the improved PWO and BSO crystals to the PWO one.

Momentum (MeV/c) | Improved PWO BSO

589 2.4 12.2
673 3.1 14.1
744 3.4 13.4
800 3.2 12.2

The decay times of three crystals were roughly estimated by fitting the waveform with an exponen-
tial function from 20 to 500 ns. The decay times obtained were 14.5 + 0.2, 20.1 + 0.1, and 112.8 + 0.9 ns
for the PWO, improver PWO, and BSO crystals, respectively. The improved PWO has a longer decay

time as compared with the nominal PWO.

§4. Energy Resolution

The energy resolution of three crystals was measured by using 200, 457, 673, and 800 MeV/c
positrons injected onto the central region (3 x3 mm?) of each crystal. Fig. 4 shows the ADC distributions
for three crystals. The ADC distributions are asymmetric due to the energy leakage in the lateral direc-

tion. Thus, the ADC distribution in each measurement was fitted with a logarithmic Gaussian [4], and
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Fig.3. Measured waveform of three crystals by using 589 MeV/c positrons.

the mean pu. and width o, were determined.
The pedestal distribution was measured with a 100 Hz clock signal trigger in each measurement,
and the mean p, and width o, of which were determined by fitting with a nominal Gaussian. The

energy resolution of each crystal o/ E is calculated by

or\2 o. 2 oy 2 oo 2
(5 -Go) () - (%) @
H— Hp 122 K — Kp

where o,/ up stands for the beam energy spread given in Ref. [5]. Since the energy leakage in the lateral

direction exists, the obtained energy resolution with one crystal is not so high. Fig. 5a) shows the energy
resolution of three crystals as a function of the incident positron energy.

The energy resolutions obtained were fitted with a function

2
oE \2 a; 2
) = == ) 3
(E) (,/E) +(ao) 3)
The a¢p and a; parameters are the coefficients for the constant and statistical terms. Table 2 shows the

fitted parameters of the function (3) to the energy resolution.

Table 2. Fitted parameters of the function (3) to the energy resolution.

Crystal | ag ai
PWO 0.00004+00.0045 0.05514+0.0003
Improved PWO | 0.0000£00.0137 0.0539+0.0003
BSO 0.00004+00.0056 0.06094+0.0004

The coefficient a( for the constant term is zero for all the crystals, suggesting that the number of
detected photoelectrons with PMT is very small. To compare the energy resolutions of the improved PWO
crystal to the PWO one directly, the difference of the energy resolution square was obtained. Fig. 5b)

shows the difference of the energy resolution squares between the PWO and improved PWO crystals as
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a function of the incident positron energy.
Ideally, the improved PWO differs only in the light output from the PWO. Thus, the difference of

the energy resolution squares are expressed only by the a; coefficients for two crystals:

2 2
( OE )2 B ( O )2 _ @1(pwo) ~ %1(Improved PWO)
E /pwo Improved PWO E

= 4)

because the other terms are common for both the PWO crystals. The difference was fitted with a function

being proportional to 1/E, and

a%(PWO) al(Improved PWO) (1 25+0. 05) x 107 ? (5)

was obtained. The obtained ai(PWO) — a%(lmproved pwo) Was consistent with the value given by the individ-
ual fitting results of the energy resolution as a function of the incident energy.

Since the light output of the improved PWO is about three times as large as that of the nominal
PWO, the coefficient for the statistical term a; for the improved one is expected to be 1/+/3 of that for
the nominal one. The difference of a; between two PWOQO’s is not as large as expected. There might be
a problem of the light output uniformity in the improved PWO crysyal. The details of the analysis and

discussion are described elsewhere [6, 71.

§5. Summary
We obtain an improved PWO crystal which impurities are doped to increase the light output. The
light output of the improved PWO crystal is about three times as large as that of the nominal PWO one.
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Fig.5. a) Energy resolution of three crystals as a function of the incident positron energy. The
solid curves show fitted function (3). b) Difference of energy resolution squares between
the PWO and improved PWO crystals as a function of the incident positron energy. The
data are compared with 0.0125/FE where E is given in GeV.

The energy resolution of the improved PWO was measured by using 200-800 MeV/c positrons, and it is
higher than that of the nominal one. Yet, it is not as good as we expected from the increase of the light

output.
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Development for Kaon Decay Veto counter for J-PARC E15
experiment

Hiroaki Ohnishi!, Shinji Okadalf, Fuminori Sakumal, and Yuya Fujiwaral*
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The J-PARC E15 experiment is designed to be performed its measurement under high intensity
Kaon beam condition (0.8 M K~ /spill(0.7s)) which will be available J-PARC very soon. The main issue
for the E15 is the high level background trigger level, especially Kaon decay in flight easily fired our
trigger condition. Therefore we need to install new trigger counter to reject fake trigger which is mainly
comming from Kaon decay. Therefore we are developing new counter, Kaon Decay Veto counter. In
this report, we are presenting conceptual design of KDV and first test results which carried out using

positron beam at LNS, Tohoku Univ.

§ 1. Introduction

1997 I b Nz KEK-E228 925% (KpX) OfGHE [1[IdBIfE, [ K Hf v — A% FRECEE O [1hMER AT
WA LRI NTVA, CTORREZL LI, Aa—llEE, TNETICEiEmE N0 KKHP—#
FOIFIVF—RIET < FITIFHAET 223U A2 A(1405) (& KB F— AT OREIKETH 2 " LWV HEZ
JieE HICHELAESD . TORANEIEEE LT, KHFIE PO EZ 75 Lz 2l TOEZDIFFICH
RO, FERISIROG NS K O RO FINE DRIV Z %1% E DR E OIREZ BT 2 HhHVR
ENZFIAED . ZTDX D IIRENE DM NUL A FIVRFREDOBIFICR E < HJik9 2 FDR S N5,
HAald, £9 TREEANG KPR TR Ths K pp IRKEEZ 3He Y2 Inflight (K-n) K
JNCIBNT, B, BSOS ES RO o T2 2 v VTR AE & K-pp AR T (A+p) D
AR 21T 2 sz His Lz, J-PARC  E15 F@Z2 5T %,

E15 EhROMtHest v k77w 7 KT Cylindrical Detector Sysytem (CDS) i#if#% 7 Figure 1 &L
TURY, FHRBETHS KI.8BR E—LT A VANT A XA—RICXKD ID TN ASE—LIE, Aerogel
counter(AC) 12 & D FUH—L~NVT K HfTE UTHEE, Z20%,. 180 cm R0 He HEICT
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The test experiment for the APD readout of the CsI(T1) electro-magnetic calorimeter for J-Parc E06
(TREK) experiment have been carried out with a single CsI(T1) module. The necessity of the development

of the new current amplifier was confirmed.

§1. TREK experiment

The J-Parc E06 (TREK) experiment aims to search the time reversal violation by measuring the
transverse muon polarization (Pr) in the K™ — n°u*v (K,,3) decay of stopped K meson at the K1.1BR
beam line in the J-Parc Hadron hall [1]. Pr is T-odd observable and expected to be little affected by
final state interactions between the decaying particles and therefore the non-zero value of the Pr is a
signature of the time reversal violation. The world record of the upper bound is |Pr| < 0.0050 (90% C.L.)
measured by the KEK-PS E246 collaboration, which is mainly limited by the statistics [2]. The K+ beam
intensity at J-Parc is expected to be about ten times larger than KEK-PS, thus the TREK experiment was
proposed as a natural extension of 246 experiment. This proposal ware approved as Stage-1 (Scientific
approval) by the PAC1 for Nuclear and Particle Physics Experiments at the J-Parc.

The detector system is an upgraded version of the KEK-PS E246 experiment [3]. The momentum
of the decaying muons are analysed by the super-conducting Toroidal magnet spectrometer, and the
transverse polarizations of the decaying muons are measured by the polarimeters which are installed
behind the spectrometer gaps. The direction of the decay plane is determined by the momentum vector

of the decaying neutral pion which is detected by the CsI(TI) barrel counter.

§2. CsI(T1) barrel counter

Photons from the decaying w° mesons are detected by the photon calorimeter: a barrel of 768 CsI(T1)
crystals (Fig. 1) surrounding a kaon stopping target. There are the two beam entrance and exit holes
and 12 so-called muon holes that positrons and muons pass into the spectrometer gaps through at the

side face. The geometrical acceptance of the CsI(T1) barrel is 75% of 4w. The thickness of each CsI(T1)
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Fig.1. The side view of the E246 detector system and the photon calorimeter with 768 CsI(T1)
crystals.

crystal is 25 cm which corresponds to a radiation length of 13.5 X. Each crystal covers 7.5° in both
polar and azimuthal angles except for the nearest region to the beam axis, where the azimuthal angle is
doubled to 10°. The shapes of the crystals are trapezoidal basis pyramidal sectors. There are 10 different
dimensions; the average transverse dimensions are 3 x 3 cm for the front end and 6 x 6 cm for the rear
end. The light output had been read via PIN photo diodes. The average light yields are 10* p.e./MeV
with S3204-03 (Hamamatsu,18 x 18 mm? ). The equivalent noise level is about 70 keV with the shaping
time of 1 pusec. The energy of the incident photon is determined by the sum of the light yields of the
central crystal and its peripherals. The performance of the CsI(TI) calorimeter in E246 experiment has

been reported in the reference [4] .

§3. APD readout of CsI(TI)

The APD readout of the CsI(T1) calorimeter have been developed for the J-Parc E06 experiment in
which the very high counting rates is expected. The width of the output signal from the shaping amplifier
almost reached 10 pusec with the PIN diode-shaping amplifier readout scheme. Thus the maximum
counting rate of the each CsI(T1) module is limited upto a few 10’s kHz. The counting rate at the TREK
experiment is expected to be about 20 times larger than the E246 experiment, which corresponds to
about a few hundreds kHz. Considering these conditions, we planed the replacement of the PIN diode
to the avalanche photo-diode (APD). The APD is a photo-sensor device which has the self-amplification
mechanism. The internal gain of some 50 for the output charge makes the pre-amplifier system simpler

and faster. The development of the pre-amplifier have been done by Russian group led by A.P. Ivashkin
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at the Institute of Nuclear Research, Russian Academy of Science, Moscow.

3.1 Prototype test with positron beam

In order to check the performance of the APD read out of CsI(Tl), the test experiment with the
positron beam have been carried out in 4th, Dec. 2007 at Laboratory of Nuclear Science(LNS), Tohoku
University. The GeV-+ beam line at LNS provides the positron beam with its energy from 100 MeV/c to
750 MeV/c and its resolution of less than few %.

A positron beams with their momentum of 100, 150, 250, 300, 350, 399, and 458 MeV/c bomberded
a single CsI(T]) cryatal and a beam profiling counter which was installed in front of a crystal. It consists
of two layers of a scintillating fiber hodoscope. Each layers which comprises 16 fibers with their cross
setions of 3 x 3 mm? determined the vertical and the horizontal position. Four central filbers of both
layers were used as the DaQ trigger. One of the CsI(T1) crystal of the the barrel calorimeter was selected
as a test module. We used two types of APD chip to decide which is better for our experiment: 5 x 5 or
10 x 10 mm?2. Both APD chips are made by Hamamatsu photonics (HPK), and their products number are
S8148-0505 and S8148-1010 for 5 x 5, 10 x 10 cm? APD’s, respectively. Although both APD chips were
bombarded by positrons in this experiments, it is easier to control the noise level and the gain parameter
for 5 x 5 APD chip. The following discussions are the result of the experiments with the 5 x 5 mm? APD
chip. The signal from the APD chip was fed to the amplifier. The shapes of the output signal from
the amplifier were recorded by the FADC, FINESSE on the COPPER system, which was driven by the
50 MHz clock generator.

3.2 Linearity and energy resolution
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Fig.2. (A) The output signal from the APD-amplifier of the CsI(TI) crystal., (B) The charge dis-
tribution for the 300 MeV positron beam.

In the Fig. 2(A), the wave form of the APD which was optically connected with the CsI(T1) crystal is
plotted for the positron with its energy of 300 MeV. The rise time of the raw signal was about 400 nsec
and the full width was about 1.8 usec. It was about ten times shorter than the width of the PIN diode

readout. There was a overshoot and ringing of the signal after 1.8 usec. The charge distributions of
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the APD output for all bombardment energies were deduced by integrating the measured data points
from the first to the 120th clock which correspond to the gate width of 2.4 psec. The charge distribution
for each beam energy was fitted by the logarithmic Gaussian [5]. The mean (1) and the width (o) ware
determined by fitting. The pedestal distribution was measured by the ’off-timing run’ in which the timing
gate was delayed by 300 usec from the normal timing with the same condition as the normal run except
the gate timing. The mean (u,) and the width (o),) of the pedestal distribution were determined by
the Gaussian fitting. p, corresponded to the ground line (no signal) and its value was 1929ch. o, was
negligible small compared with the o. The difference between p and p,, and o for each measurement
were regarded as the measured charge integral and its resolution, respectively. In Fig. 2(B), the charge
distribution is shown for the 400 MeV positron beam with a fitted result. Fig. 3(A) shows the ratio of
the charge integral to an incident positron energy as a function of the beam energies. The error bar
corresponds to the fitted error for the mean value of a logarithmic Gaussian. The ratios have almost
constant values of 0.79. It means that the output signals have the good linearity in whole energy region.
No signature of the saturation on both the APD and the amplifier can be found. The energy resolutions
for all measurements as a function of the incident beam energies are plotted in Fig. 3(B). The energy

resolutions were well reproduced by the fitting result,

g

.026 + 0.001 2
(E)Z = (0.047 4 0.003)2 + (w

),
where E is the incident beam energy in GeV. The leakage of the EM shower from the lateral surface of
a CsI(TI1) crystal caused the higher channel tail of the charge distribution and the large first coefficient
of the fitting result. And thus a statistical term could not be fixed by the fitting. The large value of the

second coefficient was partly caused by the bad signal to noise ratio of the amplifier.
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Fig.3. (A) The ratio of charge integral to E., (B) the energy resolution measured by CsI(TI).

3.3 Pile-up analysis
The counting rate of the CsI(T1) calorimeter is expected to be about a hundred kHz because of the
intense K+ beam at J-Parc. The FADC read out of the APD signal makes possible the off-line analysis
of the pile-up event. The capability study of the pile-up analysis have been carried out by the INR
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group. About 40,000 pile-up events were accumulated with the intense positron beam of which energy

was 200 MeV. Fig. 4 shows the typical examples of the waveform of the pile-up event. The function of
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Fig.4. Typical examples of the pile-up events.

the single waveform (F'(x)) are expressed as,

F(x) = po — p1eP*®(ps - erf(psx — ps5) + ps)s

erf(z) = \/2E/0 e—t2dt,

where py ~ pg were determined by the fitting of a non-pileup waveform with the low intensity beam.
The pile-up signal was fitted by the combination of two waveform functions. The trial function (f(x)) is

expressed as,
f(x) =a1F(x) + agF(x + Ax),

where, a1, ag, and Ax are the signal heights for the first and the second signals respectively, and the
time difference of the two signals, respectively. Fig. 5(A), (B), and (C) are the pulse height distributions
for non-pileup pulse, first (B) and second (C) pulse of the pile-up events, respectively. The shape and the
peak position of the first pulse height are almost same as the non-pileup pulse, but the distribution of
the second pulse height is completely different. Fig. 5(D) and (E) show the peak positions as a function
of FADC clock for the first and second decomposed pulses, respectively. Peak positions for first pulses
are almost constant above 60ch corresponding to 1.2 usec of the time difference between first and second
one. It means that we can estimate the correct energy for the first pulse with the time resolution of
1.2 psec. On the other hand, there seems no constant region in the Fig. 5(E). The overshoot and ringing

of the first pulse deteriorate the pulse height information and make troubles in the off-line analysis.

§4. Summary

The test experiment for the APD readout of a CsI(Tl) crystal have been carried out at LNS, Tohoku
University, aiming at an establishment of the readout scheme for the TREK experiment at J-Parc. The
output signal shape of the APD was very clean for the several hundred’s MeV positron beam. But the
overshoot and ringing were clearly seen on the output signal from the amplifier. The integral/differential

chain in the amplifier circuit is considered as the trouble source. An ideal current amplifier is one of the
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candidate for the present purpose to meet the requirement of the TREK experiment. The development
of the new prototype current amplifier have been completed at INR. The result of the beam test for new

amplifier will be appeared soon.
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Energy resolution of a test LNS-type pure CsI crystal
calorimeter

A. Nakamural!, T. Ishikawa?!, H. Fujimura!, R. Hashimoto!, S. Kaida?,
H. Shimizu', K. Suzuki', S. Takahashi', and H. Yamazaki!

Laboratory of Nuclear Science (LNS), Tohoku University, Sendai 982-0826, Japan

Meson photoproduction experiments are carried out to study nucleon resonances with an electro-
magnetic (EM) calorimeter complex FOREST at Laboratory of Nuclear Science, Tohoku University.
FOREST consists of three EM calorimeters, covering a solid angle of about 90% in total. The forward
calorimeter is SCISSORS III which consists of 192 pure CsI crystals. Two shapes of crystals are used
in SCISSORS III, and 144 of LNS type ones are placed in the central region. The energy resolution of a
test calorimeter made up with 4 LNS type CsI crystals has been measured by using a 100-800 MeV/c

positron beam.

§1. Introduction

Study of exotic hadrons has been a subject of great interest in nuclear phyiscs. A nucleon resonance
N*(1670) is a candidate of an adjacent member to ©" among the anti-decuplet pentaquark baryons [1].
The relevenat resonance is studied via n photoproduction on the neutron by using an EM calorimeter
complex FOREST in the GeV-v experimental hall. FOREST comprises three calorimeters and covers a
solid angle of about 90% in total. SCISSORS III is the forward calorimeter of FOREST, and consists of
144 LNS and 48 INS type pure Csl crystals which had composed the previous calorimeter SCISSORS II
in the hall [2]. Fig. 1 shows SCISSORS III and the geometry of the LNS type CsI crystal.

Although the energy resolution of a prototype EM calorimeter made up with INS type crystals were
measured thrice [3], that of an LNS type CsI calorimeter had not been measured yet. Thus, the energy

resolution of a test calorimeter made up with 4 reserved LNS CslI crystals was measured.

§2. Experimental Setup

The energy resolution of a test LNS CslI calorimeter was measured at the positron beamline for
testing detectors at Laboratory of Nuclear Science (LNS), Tohoku University. The test calorimeter is
made up with 4 LNS type pure CsI crystals. Momentum-analyzed positrons were used as an incident
beam, and the momentum of the beam ranges from 100 to 800 MeV/c. A beam profile monitor (BPM)
was used to specify the position of the incident positrons and to make a trigger for the data acquisition.
BPM consists of two layers of scintillating fiber (SciFi) hodoscopes. Each hodoscope consists of 16 SciFi’s

with a cross section of 3 x 3 mm?. The upstream and downstream layers determine the y and « positions
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Fig.1. a) Schematic view of SCISSORS III. The central units (gray) are the LNS type, and the
peripheral ones (black) are the INS type. b) Geometry of the LNS type CsI crystal.

of the incident positron, respectively. Fig. 2 shows the experimental setup for the energy resolution

measurement of the calorimeter.

BPM

p
/s _"!f|lﬁ|1'1iln':

Positron
Beam . ’

LNS Csl crystals

Fig.2. Experimental setup for energy resolution measurement of the test calorimeter comprised
of 4 LNS type CslI crystals. The 16 x 16 scintillating fiber hodoscopes are placed in front
of the calorimeter to determine the position of incident positions.

The trigger condition for the data acquisition was described as
[« fiber OR| ® [y fiber OR], (1)

where ® means coincidence of signals. The maximum trigger rate was 2 kHz and a fraction of accidental
coincidence events was negligibly small. The energy calibration for the CsI crystals was made by using
200, 300, 458, 589 and 744 MeV positrons injected onto the central region (6 x 6 mm?) of each crystal one
by one. The LNS type CsI crystal has the shape of a truncated regular hexagonal pyramid. Therefore,
the position and the tilted angle of the calorimeter were set so that the beam axis was perpendicular to

the front face of the module of interest. Then, the gain of each detector module was roughly adjusted.
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§3. Energy Calibration

The energy calibration for 4 crystals was made by using 200, 300, 458, 589 and 744 MeV /¢ positrons
injected onto the central region (6 x 6 mm?) of each crystal one by one. The ADC distribution in each
measurement was fitted with a logarithmic Gaussian [4], and the mean p. and width o. were deter-
mined. Fig. 3 shows the typical ADC distributions that the positrons are incident on the central region

of No. 3 crystal.

ADC (channel)

Fig.3. Typical ADC distributions that the positrons are incident on the central region of No. 3
crystal. The incident positron momentum are described in each panel. The solid line
shows the fitted logarithmic Gaussians.
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The pedestal distribution was measured with a 1 kHz clock signal trigger in each measurement,

and the mean p, and width o, of which were determined by fitting with a nominal Gaussian. Since

the energy leakage in the lateral direction exists, the ratios u/E. are different for different incident

energies E. where p = p. — pp,. Fig. 4 shows the ratio u/E. as a function of the incident energy FE..
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Fig.4. Ratio pu/E. as a function of the incident energy E.. The u/E. is not constant due to the
energy leakage in the lateral direction. The solid line shows the fitted linear function.

The ratio E/p as a function of the incident energy E. is different between 4 crystals. Although all

the slopes are negative, the slope for No. 2 crystal is larger than that for another one. This behavior

cannot be explained only with the energy leakage in the lateral direction. The p/E,. was well fitted with
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Fig.5. Energy distributions of the calorimeter at the incident energy of 800 MeV for all BPM
fiber combinations together with the fitted logarithmic Gaussians. The combination of «
and y BPM fibers which corresponds to the incident position is described in each panel.

a linear function for all the crystals. The gain of each crystal was adjusted so that the limit of 1/ E. at

E. = 0 should be the same. The energy of each crystal E; was given by
E;=a(A—pp), @)

where A is a measured ADC value and « is the limit of E/p at E = 0.

§4. Energy Resolution

The energy of the calorimeter FE was reconstructed by the sum of 4 crystal energies E; as

4
E=) E,.
i=1

The events that positrons were injected onto the central 24 x 24 mm? region of the EM calorimeter were

3)

selected to suppress the energy leakage in the lateral direction. The energy distribution is estimated for
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each combination of  and y BPM fibers. Fig. 5 shows the energy distributions of the calorimeter at the
incident energy of 800 MeV for all the BPM fiber combinations.

When positrons are injected on the Y9 and Y 10 BPM fibers, the reconstructed energy spreads in a
wide range. This is because there is a gap between Nos. 2 and 4 crystals in the calorimeter, and because

many EM shower particles go through the gap. Fig. 6 shows the photo of the calorimeter front face.

[ N | SR R o i e W

Fig.6. Photo of the calorimeter front face. A 2 mm gap between Nos. 2 and 4 crystals in the
calorimeter is observed.

The energy resolution o g/ E was estimated for each  and y BPM fiber combination as

() (@) ()
E Iz Hb 7

from the mean p and width o of the reconstructed energy distribution, the beam energy spread o/ s
given in Ref. [5], and the width o, of the energy distribution for the clock trigger (pedestal distribution).
Since the events that the positron inject on the Y8 and Y9 BPM BPM fibers do not form a peak in the
energy distribution, the energy resolution for them are not estimated. Fig. 7 shows the energy resolution

as a function of the incident energy.

The energy resolutions obtained were fitted with

2

(%) - (F5) e
where the incident energy is given in GeV. The a( and a; parameters are the coefficients for the constant
and statistical terms. Table 1 summarizes the fitted parameters.

The energy resolution is about 3.0% + 0.3% at 1 GeV when the positrons are incident on the Y6
and Y 11 BPM fibers, and that is about 4.1% + 0.3% when they are incident on the Y7 and Y 10 ones. In
the case that the positrons are incident on the calorimter closely to the crystal boundaries, the energy
resolution becomes worse due to the gap between the crystals. In that case, many EM shower particles
go through the gap and do not deposit energies in crystals. Although this kind of gaps also exist in
SCISSORS III, the target point does not lie on any of the gap planes, and the generated particles in
the target material do not go through a gap in SCISSORS III The details of the analysis for the energy

resolution are described elsewhere [6].
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Fig.7. Energy resolution of the LNS CsI calorimeter as a function of the incident positron en-
ergy. The incident position is described in each panel and the solid curves show the fitted
functions (5).

§5. Summary

The energy of a test calorimeter made up with 4 LNS type CsI crystals has been studied by using
a positron beam with energies up to 800 MeV. The energy resolution for 1 GeV positrons obtained is
3.0% + 0.3% for Y6 and Y11 BPM fibers, and that is 4.1% + 0.3% for Y7 and Y 10 ones, When the
positrons are incident on the calorimter closely to the crystal boundaries, the energy resolution becomes

worse due to the gap between the crystals.
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Table 1. Fitted parameters in Eq. 5 with measured energy resolutions for each combination of x
and y BPM fibers. The ag and a; parameters are the coefficients for the constant and

statistical terms. The energy resolution is give in %.

BPM ao ay oe/Eligev || BPM ag ay or/E|1 gev
6-6 1.74840.148 2.7414+0.041 | 3.251+0.087 6-10 | 2.5504+0.142 3.108+0.052 | 4.020+0.099
7-6 1.7154+0.140 2.5914+0.042 | 3.107+0.085 7-10 | 2.6854+0.135 2.9464+0.053 | 3.986+0.099
8-6 1.8594+0.134 2.53740.043 | 3.1454+0.086 8-10 | 2.668+0.146 2.973+0.055 | 3.995+0.106
9-6 1.736+0.144 2.551+0.043 | 3.086+0.088 9-10 | 2.891+0.135 2.894+0.057 | 4.0914+0.104
10-6 | 1.8444+0.108 2.54440.035 | 3.1424+0.069 | 10-10 | 2.878+0.151 3.004+0.059 | 4.160+0.113
11-6 | 1.393+0.203 2.7624+0.048 | 3.093+0.101 || 11-10 | 3.064+0.161 3.071+0.070 | 4.338+0.124
6-7 2.9894+0.141 3.0954+0.060 | 4.303+0.107 6-11 | 1.72240.132 2.569+0.040 | 3.093+0.081
7-7 2.828+0.134 3.014+0.051 | 4.1334+0.099 7-11 | 1.419+0.136 2.499+0.037 | 2.8744+0.074
8-7 2.999+0.132 2.901+0.056 | 4.1734+0.103 8-11 | 1.2324+0.125 2.5444+0.032 | 2.827+0.062
9-7 2.649+0.145 3.012+0.058 | 4.011+0.105 9-11 | 1.5224+0.141 2.461+0.041 | 2.894+0.082
10-7 | 2.8694+0.144 2.993+0.057 | 4.146+0.108 || 10-11 | 1.016+0.205 2.653+0.039 | 2.841+0.082
11-7 | 2.933+0.162 3.089+0.063 | 4.260+0.121 || 11-11 | 2.086+0.132 2.4354+0.049 | 3.2064+-0.094
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Meson photoproduction experiments are carried out to study nucleon resonances with an electro-
magnetic (EM) calorimeter complex FOREST in the GeV-vy experimental hall. FOREST consists of three
EM calorimeters, covering a solid angle of about 90% in total. The backward calorimeter is Rafflesia II
which is made up with two types of lead glass Cerenkov counters: 10 SF5 and 52 SF6 lead glasses. The
energy resolution of a prototype calorimeter comprised of a 3 x 3 SF6 lead glass array has been measured

by using 100-800 MeV /¢ positron beams.

§1. Introduction

Nucleon resonances are studied via 7%, 1, and w photoproduction by using an EM calorimeter
complex FOREST in the GeV-v experimental hall. FOREST comprises three calorimeters and covers a
solid angle of about 90% in total. Rafflesia II is the backward calorimeter of FOREST, and consists of 10
SF5 and 52 SF6 lead glass Cerenkov counters [1].

Rafflesia II consisted of 36 SF5 courters in the original design of FOREST [2]. The size of the
SF5 counter is 150 mm (W) x 150 mm (H) x 300 mm (T), and its density is 4.075 g/cm3. The energy
resolution of the SF5 counter measured at the positron beamline for testing detectors corresponded to
4.9% for 1 GeV/c positrons [3]. Since we failed many times in making a solid hydrogen target fitted to
FOREST, we decided to make a distance shorter between a target holder and a vacuum chamber for a
refrigerator of the target system [4]. The chamber occupied some space reserved for the SF5 counters.

The SF6 lead glass Cerenkov counters were adopted for a large part of Rafflesia II instead of SF5
ones. The size of the SF6 courter is 75 mm (W) x 75 mm (H) x 250 mm (T), and its density is 5.20 g/cm?3.
Since the density of SF6 is higher than that of SF5, the SF6 counter is thicker in a radiation length unit
(14.7X,) than the SF5 one (11.8X,). The higher position resolution will be obtained by adopting the
smaller modules. The energy resolution of a prototype calorimeter made up with 9 SF6 counters was

measured.

§2. Experimental Setup
The performance study of a test calorimeter was made at the positron beamline for testing detectors.

The test calorimeter is comprised of a 3 x 3 lead glass Cerenkov counter array. Momentum-analyzed
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positrons were used as an incident beam. The positron beam with the momentum from 100 to 800 MeV/c
irradiated the calorimter. A beam profile monitor (BPM) was used to specify the position of incident
positrons and make a trigger for the data acquisition. BPM consists of two layers of scintillating fiber
(SciFi) hodoscopes. Each hodoscope consists of 16 SciFi’s with a cross section of 3 x 3 mm?. The upstream
and downstream layers determine the y and x positions of the incident positron, respectively. Fig. 1

shows the experimental setup for the performance study of the calorimeter.

SF6 Lead Glass

Fig.1. Experimental setup for the performance study of a test calorimeter comprised of 9 SF6
lead glasses. The 16 x 16 scintillating fiber hodoscopes are placed in front of the calorime-
ter to determine the position of incident positions.

The trigger condition for the data acquisition was described as
[z fiber OR| ® [y fiber OR|, (1)

where ® means coincidence of signals. The maximum trigger rate was 2 kHz and a fraction of accidental
coincidence events was negligibly small. The energy calibration for the SF6 counters was made by using
200, 300, 399, 458, 589 and 744 MeV/c positrons injected on to the central region (9 x 9 mm?) of each
counter one by one. Then, the supplied high voltage to the photo-multiplier tube of each counter was

determined so that the gain of each counter became roughly the same.

§3. Energy Calibration

The energy calibration for 9 SF6 counters was made by using 200, 300, 399, 458, 589 and 744 MeV/c
positrons injected onto the central region (9 x 9 mm?) of each counter one by one. The ADC distribution
in each measurement was fitted with a Gaussian, and the mean p. and width o. were determined.
Fig. 2 shows the ADC distributions that the positrons are incident on the central region of No. 5 counter.
The obtained ADC distributions were symmetric for all the incident energies, suggesting the energy

resolution of the SF6 calorimeter is poor.
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Fig.2. ADC distributions that the positrons are incident on the central region (9 x 9 mm?) of
No. 5 counter. The incident positron momentum are described in each panel. The solid
line shows the fitted Gaussian.

The pedestal distribution was measured with a 1 kHz clock signal trigger in each measurement,
and the mean pu, and width o, of which were determined by fitting with a Gaussian. Since the energy
leakage in the lateral direction exists, the ratio pu/ E. is not constant for different incident energies E.

where 1 = p. — pp. Fig. 3 shows the ratio pu/E. as a function of the incident energy E..
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Fig.3. Ratio pu/E. as a function of the incident energy E.. The pu/E. is not constant due to the
energy leakage in the lateral direction. The solid line shows the fitted linear function.

The behavior of the ratio u/E. as a function of the incident energy FE. is different between 9 coun-
ters. Some of the ratios has a positive slope, and this cannot be explained only with the energy leakage
in the lateral direction. The u/E,. was well fitted with a linear function for all the counters. The gain of
each counter was adjusted so that the limit of u/E. at E. = 0 should be the same. The energy of each

counter E; was given by
E,=a(A—pp), (2)
where A is a measured ADC value and « is the limit of E./u at E. = 0.

§4. Energy Resolution

The energy of the calorimeter FE was reconstructed by the sum of 9 SF6 counter energies F; as

E=) E. 3)
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The events that positrons were injected onto the central 9 x 9 mm? region of the EM calorimeter were
selected to suppress the energy leakage in the lateral direction. Fig. 4 shows the energy distributions of

the calorimeter for all the incident positron energies.
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Fig.4. Energy distributions of the calorimeter for all the incident positron energies together
with the fitted Gaussians. The lower peak shows the pedestal energy distribution corre-
sponding to the zero energy. The incident energy is described in each panel. Two series
of the energy resolution measurement were made.

The energy resolution o g/ F was estimated for all the incident energies as

V-0 - (@) - ()
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Fig.5. Energy resolution of the SF6 calorimeter as a function of the incident positron energy.
The solid curve shows the fitted function (5).

from the mean p and width o of the reconstructed energy distribution, the beam energy spread o/ s
given in Ref. [5], and the width o, of the energy distribution for the clock trigger (pedestal distribution).
Fig. 5 shows the energy resolution as a function of the incident energy.

The energy resolutions obtained were fitted with

(2)2 _{0.0063 +0.0012 \* . (0:07020.0006
E/) E VE

where the incident energy is given in GeV. The energy resolution for 1 GeV positrons corresponds to 7.6%.

2
) + (0.0283 + 0.0019)%, (5)

Since the coefficient for the statistical term is dominant in the energy dependence of the energy resolu-
tion, the better energy resolution can be obtained by using photomultiplier tubes with a UV window to
detect Cerekov lights. The details of the analysis for the energy resolution are described elsewhere [6].

The estimation of the position resolution is in progress.

§5. Summary

The energy resolution of a test calorimeter made up with 9 SF6 lead glass Cerenkov counters has
been studied by using a positron beam with energies up to 800 MeV. The obtained energy distributions
with the calorimeter were symmetric for all the incident energies due to the poor energy resolution of
the calorimeter (suggesting small number of detected photoelectrons with photomultiplier tubes). The
energy resolution obtained is 7.6% for 1 GeV positrons. The energy resolution is expected to be better by

using photomultiplier tubes with a UV window to detect Cerekov lights.

Acknowledgement

This work was supported in part by Grant-in-Aid for Specially promoted Research (19002003).



[1]
[2]
[3]
(4]
(5]
(6]

References

T. Ishikawa et al.: Research Report of LNS 41, Tohoku University, 7 (2008).
T. Ishikawa et al.: Research Report of LNS 39, Tohoku University, 35 (2007).

M. Sato, T. Ishikawa et al.: Research Report of LNS 41, Tohoku University, 22 (2009).

R. Hashimoto et al.: Research Report of LNS 41, Tohoku University, 31 (2009).
T. Ishikawa et al.: Research Report of LNS 40, Tohoku University, 6 (2008).
T. Ishikawa: Internal GeV-v Analysis Note No. 189D (2010).

87



88  Research Report of Laboratory of Nuclear Seience, Tohoku University Vol. 42&43 (2010)

(LNS Experiment : #2624)

Performance of a test electro-magnetic calorimeter made up
with INS type pure CslI crystals

H. Sugai!, T. Ishikawa!, H. Fujimura', R. Hashimoto!, S. Ogushi?,
H. Shimizu', K. Suzuki', and H. Yamazaki'

1Laboratory of Nuclear Science (LNS), Tohoku University, Sendai 982-0826, Japan

Photoproduction experiments are conducted to study nucleon resonances with an electro-magnetic
(EM) calorimeter complex FOREST at Laboratory of Nuclear Science, Tohoku University. FOREST
consists of three independent calorimeters, covering a solid angle of about 90% in total. SCISSORS III
is comprised of pure Csl crystals, and covers the forward part of FOREST. Two shapes of crystals are
used in SCISSORS III, and 48 of INS type ones are placed in the peripheral region. The performance of
a test calorimeter made up with 7 INS type CsI crystals has been studied by using a positron beam with

energies up to 800 MeV.

81. Introduction

Nucleon resonances are studied via 7°, 1, and w photoproduction by using an EM calorimeter
complex FOREST in the GeV-v experimental hall. FOREST comprises three calorimeters and covers a
solid angle of about 90% in total. SCISSORS III is the forward calorimeter of FOREST, and consists of
144 LNS and 48 INS type pure CsI crystals which had composed the previous calorimeter SCISSORS II
in the hall [1]. Fig. 1 shows SCISSORS III and the geometry of the INS type CsI crystals.

a) b)

Thickness 250.0

Fig.1. a) Schematic view of SCISSORS III. The central units (gray) are the LNS type, and the
peripheral ones (black) are the INS type. b) Geometry of the INS type CsI crystals.

The energy resolution of a prototype EM calorimeter made up with 7 INS crystals were measured
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twice. The first measurement was carried out at the 1.3 GeV electron synchrotron in Institute for Nu-
clear Study (INS), University of Tokyo. The momentum-analyzed electrons converted from the photon
beam irradiated the calorimeter. The energy resolution obtained for 1 GeV electrons was 2.12%. The
second one was performed at the 12 GeV proton synchrotron in High Energy Accelerator Research Or-
ganization (KEK). The momentum-analyzed secondary electrons generated at the production target are
used as a beam. The energy resolutions were found to be 3.64%+0.19% and 3.65%+0.24% for 1 GeV
positrons and electrons, respectively. The difference of the energy resolutions suggests the deterioration
due to the hygroscopicity of the CsI material. The 10 of 58 INS CslI crystals which had composed SCIS-
SORS II are not used in SCISSORS III. Thus, the energy resolution of a test calorimeter consisting of 7

reserved INS Csl crystals was measured again.

§2. Experimental Setup

The performance study of a test calorimeter was made at the positron beamline for testing detectors
at Laboratory of Nuclear Science (LNS), Tohoku University. The test calorimeter is made up with 7 INS
type pure Csl crystals. Momentum-analyzed positrons were used as an incident beam with the energy
ranging from 100 to 800 MeV/c. A beam profile monitor (BPM) was used to specify the position of the
incident positrons and make a trigger for the data acquisition. BPM consists of two layers of scintillating
fiber (SciFi) hodoscopes. Each hodoscope consists of 16 SciFi’s with a cross section of 3 x 3 mm?. The
upstream and downstream layers determine the y and x positions of the incident positron, respectively.

Fig. 2 shows the experimental setup for the performance study of the calorimeter.

BPM

.' Positron

Beam

INS Csl crystals

Fig.2. Experimental setup for the performance study of a test calorimeter comprised of 7 INS
type CsI crystals. The 16 x 16 scintillating fiber hodoscopes are placed in front of the
calorimeter to determine the position of incident positions.

The trigger condition for the data acquisition was described as
[« fiber OR| ® [y fiber OR|, (1)

where ® means coincidence of signals. The maximum trigger rate was 2 kHz and a fraction of accidental

coincidence events was negligibly small. The energy calibration for the CsI crystals was made by using
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300, 460, 590, and 800 MeV positrons injected onto the central region (9 x 9 mm?) of each crystal one by
one. The INS type Csl crystal has the shape of a truncated regular hexagonal pyramid. Therefore the
position and the tilted angle of the calorimeter were set so that the beam axis was perpendicular to the

front face of the module of interest. Then, the gain of each detector module was roughly adjusted.

§3. Energy Calibration

The energy calibration for 7 crystals was made by using 200, 300, 399, 458, 589, and 744 MeV/c
positrons injected onto the central region (9x9 mm?) of each crystal one by one. The ADC distribution
in each measurement was fitted with a logarithmic Gaussian [4], and the mean p. and width o, were
determined. Fig. 3 shows the ADC distributions that the positrons are incident on the central region of

No. 1 crystal.
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Fig.3. ADC distributions that the positrons are incident on the central region of No. 1 crystal.
The incident positron momentum is described in each panel. The solid line shows the
fitted logarithmic Gaussian.

The pedestal distribution was measured with a 1 kHz clock signal trigger in each measurement,
and the mean p, and width o, of which were determined by fitting with a nominal Gaussian. Since
the energy leakage in the lateral direction exists, the ratios u/E. are different for different incident
energies E, where p = p. — ppp. Fig. 4 shows the ratio p/ E, as a function of the incident energy Fg.

The ratio i/ E. as a function of the incident energy F. is different between 7 crystals, and the slope
is negative for Nos. 2, 3, 4, and 7, it is positive for Nos. 5 and 6, and it is almost constant for No. 1. This
behavior cannot be explained only with the energy leakage in the lateral direction. The pu/E. was well
fitted with a linear function for all the crystals. The gain of each crystal was adjusted so that the limit

of u/E,. at E = 0 should be the same. The energy of each crystal E; was given by
Ei:a(A*H'p)a (2)

where A is a measured ADC value and « is the limit of (u/ Ee)_1 at E. = 0.
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Fig.4. Ratio u/E. as a function of the incident energy E.. The p/E. is not constant due to the
energy leakage in the lateral direction. The solid line shows the fitted linear function.

§4. Energy Resolution

The energy of the calorimeter E was reconstructed by the sum of 7 crystal energies E; as

7
E=) Ei. 3)
i=1

The events that positrons were injected onto the central 9 x 9 mm? region of the EM calorimeter were
selected to suppress the energy leakage in the lateral direction. Fig. 5 show the energy distributions
of the calorimeter for all the incident positron energies. The energy distributions were also fitted with
a logarithmic Gaussian and the mean u, width o, and asymmetry parameter 1 were obtained for each
incident positron energy for each incident position.

The energy resolution og/FE was estimated as

oE \2 o\? op 2 o, \2
- -G - () @
E Iz 178 Iz
from the mean p and width o of the reconstructed energy distribution, the beam energy spread o/ up
given in Ref. [5], and the width o, of the energy distribution for the clock trigger (pedestal distribution).

Fig. 5 shows the energy resolution as a function of the incident energy. The energy resolutions obtained

were

(2)2 B ( 0.157 + 0.032 >2 ( 1.584 4 0.024

2
2
B E JE > + (2.803 £ 0.018)", 5)

where the incident energy is given in GeV.
The energy resolution for 1 GeV positrons corresponds to 3.22% + 0.02%, and the behavior of the

energy resolution is similar to that measured at KEK for positrons. The energy resolution measured at
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Fig.6. The energy resolutions of the INS CsI calorimeter as a function of the incident positron
energy. The filled and open circles show those measured for positrons at LNS and KEK,
respectively. The filled and open boxes show those measured for electrons at INS and
KEK, respectively. The solid curve shows the fitted function (5) to the LNS measurement.

INS (the first measurement) is extremely high, suggesting the deterioration due to the hygroscopicity of
the Csl crystal. The difference of the energy resolutions measured for positrons and electrons probably
comes from the ambiguity of the knowledge on the energy spread of the secondary electron and positron
beams at KEK. The difference between the LNS and KEK measurements may be caused by the same

ambiguity. The details of the analysis for the energy resolution are described elsewhere [6].

§5. Position Resolution
The incident position of positrons on the calorimeter was reconstructed by an energy weighted

average of the position vectors &; of 7 crystals as

7 7
R, = (Z wi(Ei)f"i) / (Z 'wi(Ei)> ; (6)
i—1 im1

where the origin of the position vectors was the common center of a circumscribed sphere for front faces
of the modules. The normalization was made in such a way that the length of the reconstructed position
vector should be the radius of the sphere (700 mm). Since the energy deposit to the central crystal was

much larger than that to the peripheral ones, the weight for the signal from the central crystal was set
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to be smaller by using an extra factor r.. And the weight in Eq. (6) becomes

rcE; for central CsI (¢ = 1), and
w;(E;) = (7
E; for peripheral CsI.
The factor . was determined for each incident energy so that the mean of the difference between the
reconstructed position and the incident position determined by BPM should be 0. Fig. 7 shows the

optimum factor r. as a function of the incident positron energy E..
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Fig.7. Optimum factor r. as a function of the incident positron energy E.. The solid line shows
the fitted function (8).

The determined values of r. are well fitted with
re(E) = (39.071 + 0.263) log {1 + (9.360 + 0.020) E} exp {(76.968 +0.007) E<°-°4"i°-0°°>} .(8)

The x(y) position resolution is estimated with the width o (o) which is obtained by fitting a Gaussian
function. Fig. 8 shows the position resolution as a function of the incident energy.

The position resolution o, and o, may also be represented with a similar function to Eq. (5). The
fitted result are

2
0s(E) = \/<5‘76j;‘m> + (12.78 £ 0.00)?

6.48 +0.00
VE

where the position resolution o, (o) and E are given in mm and GeV, respectively. The « and y

()

oy(E) = \/( )2 + (10.90 + 0.00)?

position resolutions for 1 GeV positrons correspond to 14.0 mm and 12.7 mm, respectively. The details of
the analysis for the position resolution are described elsewhere [7]. In Ref. [7], several weight functions

are tested to reconstruct the incident positions.
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Fig.8. The position resolution as a function of the incident energy. The circles and boxes show
the « and y position resolutions, respectively. The data are fitted with the form (9).

§6. Summary

The performance of a test calorimeter made up with 7 INS type CsI crystals has been studied by
using a positron beam with energies up to 800 MeV. The energy resolution for 1 GeV positrons obtained
is 3.22% + 0.02%, and the deterioration due to the hygroscopicity is observed. The x and y position

resolutions for 1 GeV positrons obtained are 14.0 and 12.7 mm, respectively.
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Meson photoproduction experiments are being carried out to study nucleon resonances with a large
solid angle electro-magnetic (EM) calorimeter complex FOREST at Laboratory of Nuclear Science, To-
hoku University. Three types of EM calorimeters are employed in FOREST: pure CsI crystals, lead
scintillating fiber modules (Lead/SciFi), and lead glasses. Since Lead/SciFi is a sampling calorimeter,
its energy resolution is not so high and the efficiency for charged hadrons is not 100%. The lead glass
cannot measure the energy of charged hadrons because they do not generate EM showers and do not
emit Cerenkov lights when their energies are low. In addition, the gaps of EM calorimeters lose the ac-
ceptance for the reactions of interest. Thus, the replacement of FOREST with a homogeneous inorganic
scintillators is desired.

The BSO and BGO crystals are the candidates of new EM calorimeter modules. In this report,
the energy resolutions of the prototype calorimeters with these crystals are compared in response to

100-800 MeV/c electrons.

§1. EM calorimeter complex FOREST

Meson photoproduction experiments are being carried out to study nucleon resonances with an
EM calorimeter complex FOREST at Laboratory of Nuclear Science (LNS), Tohoku University. Three
types of EM calorimeters are employed in FOREST: pure Csl crystals, lead scintillating fiber modules
(Lead/SciF1i), and lead glass Cerenkov counters. Although the pure CsI crystal is an inorganic scintillator
and it has the better energy resolutions at high energies, the energy resolutions of the Lead/SciFi and a
lead glass calorimeters are poor.

Lead/SciFi is a sandwich calorimeter made up of a heavy material (lead) and sensitive detector (scin-
tillating fiber), and it is one of the cheapest calorimeter module. The energy resolution of the Lead/SciFi
calorimeter in response to 200-800 MeV /c was measured at LNS. It is found to be 7.2% for 1 GeV/c elec-
trons [1]. Since Lead/SciFi is a sampling calorimeter, the detection efficiency for the charged hadrons
may depend on the incident position.

A lead glass Cerenkov counter has the higher energy resolution for electrons, positrons, and pho-
tons. The energy resolution of an SF5 lead glass calorimeter obtained is 4.9% for for 1 GeV positrons [2],

and that of an SF6 one is 7.6% [3]. It is however insensitive to the low energy charged particles that do
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not generate the EM shower since Cerenkov photons are not emitted from them.

Although the solid angle of FOREST is larger than that of the previous calorimeter SCISSORS II
(2002—-2005), there are gaps between different calorimeters. The gaps lose the acceptance for the reac-
tions of interest. Thus, the replacement of FOREST with a 47 homogeneous inorganic scintillators is

planed. At this moment, BSO and BGO crystals are the candidates of new EM calorimeter modules.

§2. Experimental Setup

The energy resolutions of the prototype calorimeters with BSO and BGO crystals are measured by
using 200-800 MeV/c positron beams for testing detectors at LNS. The prototype EM calorimeters are
constructed with a 2x2 array of BSO or BGO crystals. Each crystal was 210 mm long with a cross section
of 40 x 40 mm?, and was connected to a 1-inch photo-multiplier tube Hamamatsu H7415MOD. The four
PMT’s used for the BSO calorimeter are exactly the same as the BGO one. Positrons with energies
ranging from 100 to 800 MeV/c were used as incident beams. To determine the incident position of
the positrons, a beam profile monitor (BPM) was used. The BPM consists of two layers of scintillating
fiber (SciFi) hodoscopes and 16 SciFi’s with a cross section of 3 x 3 mm? were aligned in each hodoscope.
The upstream and downstream layers determine x and y positions from responding fibers, respectively.

Fig. 1 shows the experimental setup for the energy resolution measurement of the calorimeters.

BSO/BGO1 . BSO/BGO 2

X9 A8 x7
; i
7 X
Y e
BSO/BGO 3 BSO/BGO 4

Fig.1. Experimental setup for the performance measurement of prototype BSO and BGO EM
calorimeters. The 16 x 16 scintillating fiber hodoscopes are placed in front of a calorimeter
to determine incident positions of positrons.

The trigger condition of the data taking system was described as
[« fiber OR| ® [y fiber OR], (1)

where ® stands for the coincidence of signals. The maximum trigger rate was 3 kHz and a fraction of

accidental coincidence events was negligibly small.
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§3. Energy Calibration

The energy calibrations for the BSO and BGO modules were made by using 200, 299, 399, 457, 588,
and 743 MeV/c positrons injected onto the central region (3x3 mm?) of each crystal one by one. The
ADC distribution in each measurement was fitted with a logarithmic Gaussian [4] to deretermine the
mean u. and width o.. Fig. 2 shows the ADC distributions that the positrons are incident on the central

region of No. 1 BGO crystal.

60 F 199 MeVi/e 0F 500 399 MeVic
4 Lo —
2 s 25 30 |l —
0 20 ;
e I
O I 5 10 =l S
=L | | 0k 0 |
S50 457 Mevic| 0 BE
ST SO R — 40 35 -
0o 30 39E
20l | 20 00
L e 10 £ 10 =

. . L . A
0
500 1000 1500 O 500 1000 1500

ADC Channel

Fig.2. ADC distributions that the positrons are incident on the central region of No. 1 BGO
crystal. The incident positron momentum are described in each panel. The solid line
shows the fitted logarithmic Gaussians.

0 . | | 0
0 500 1000 1500 O

The pedestal distribution was measured with a 1 kHz clock signal trigger in each measurement,
and the mean p, and width o, of which were determined by fitting with a nominal Gaussian. Since
the energy leakage in the lateral direction exists, the ratios E./u are different for different incident
energies E. where p = p. — ppp. Fig. 3 shows the ratio E./p as a function of the incident energy E..

The E./p was well fitted with a linear function for all the crystals. The gain of each crystal was
adjusted so that the limit of E./p at E. = 0 should be the same. The energy of each crystal E; was
given by

Ei:a(A*l‘p)a (2)

where A is a measured ADC value and « is the limit of E./u at E = 0.
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Fig.3. Ratio E./p as a function of the incident energy E.. The E./p is not constant due to the
energy leakage in the lateral direction. The solid line shows the fitted linear function.

§4. Energy Resolution

The energy of the calorimeter E was reconstructed by the sum of 4 crystal energies E; as
4
E=) E;. 3)
i=1

The events that positrons were injected onto the central x7-y7, x7-y9, x9-y7, and x9-y9 regions of
the EM calorimeter depicted in Fig. 1, which did not include the crystal boundaries, were selected to
suppress the energy leakage in the lateral direction. Fig. 4 and 5 show the energy distributions of the
BSO and BGO calorimeters for all the incident positron energies, respectively. The energy distributions
were also fitted with a logarithmic Gaussian and the mean u, width o, and asymmetry parameter 7
were obtained for each incident positron energy for each incident position.

The energy resolution og/F was estimated as

9 2 2 2
OE o ) Ip
() -(0) () - (%) @
E Iz Mo 7
from the mean p and width o of the reconstructed energy distribution, the beam energy spread o/ s

given in Ref. [5], and the width o, of the energy distribution for the clock trigger (pedestal distribution).

Fig. 6 shows the energy resolution as a function of the incident energy. The energy resolutions obtained

were
og\%2 [ 0.0205+0.0001 \? 2
(%) = ( = ) +(0.0114 = 0.0004) (5)
for the BSO calorimeter, and
op\2 [ 0.0190 +0.0004 > )
am )\ _ .0094 + 0.
( = ) ( = > +(0.0094 -+ 0.0009) (6)

for the BGO one, where the incident energy is given in GeV. The energy resolutions at 1 GeV positrons

corresponded to 2.35% + 0.02% and 2.12% + 0.05% for the BSO and BGO calorimeters with R8900U
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Energy distributions of the BSO calorimeter for all the incident positron energies together
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x7-y9, £9-y7, and x£9-y9 regions. The incident momentum is described in each panel.
The measurements are carried out thrice at several positron momenta.
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Fig.5. Energy distributions of the BGO calorimeter for all the incident positron energies to-
gether with the fitted logarithmic Gaussians. The positrons are incident on the central
x7-y7, x7-y9, £9-y7, and £9-y9 regions. The incident momentum is described in each
panel.
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PMT’s, respectively. The energy resolution of the BSO calorimeter was slightly worse than that of the
BGO one.

[\ (98] ~ (9 (@) ~
T T[T T[T T[T TTT T TTT]

Energy Resolution (%)

[Em—

200 400 600 800
Incident Energy (MeV)

O

)

Fig.6. The energy resolutions of the BSO and BGO calorimeter with the R8900U PMT’s as a
function of the incident positron energy. The filled and open circles show the energy
resolutions of the BSO and BGO calorimeters, respectively. The solid curves show the
fitted functions (5) and (6).

The energy resolution of a BSO calorimeter with Hamamatsu H7415MOD reported is 2.04%+0.01%
for 1 GeV positrons [6]. Although the effective area of the photo-cathode in R8900U (23 x 230 mm?) is
much larger than that in H7415MOD (25 mm¢), the energy resolution for the BSO calorimter with
R8900U is lower. This suggests that R8900U may have a problem in the focusing of the photoelectrons.

§5. Summary

The BSO and BGO crystals are candidates of new EM calorimeter modules. The energy resolutions
of the prototype calorimeters with these crystals are compared in response to 100—800 MeV/c electrons.
The energy resolutions for 1 GeV positrons are 2.35% + 0.02% and 2.12% + 0.05% for the BSO and BGO
calorimeters, respectively. The energy resolution of the BSO calorimeter was slightly worse than that of
the BGO one.
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We have studied a 7w° detection counter (SP0) which is used for a hypernuclear v-ray spectroscopy
experiment E13 at J-PARC. The SPO is a key detector to separate hypernuclear producton events from
many background events due to decays of K~ beam particles. Positoron beams of three different energies
were irradiated to a prototype of the SPO counter at LNS-Tohoku. A response to the positoron beams
was compared with a Monte Carlo simulation and good agreement was obtained between the real data
and the simulation. The detection efficiency of the SPO for the K~ — 7~ #° event was obtained to be

78.7 + 1.5(sys.) % including the systematic error of 1.5% estimated from the present experiment.

§1. I\AIN—I%~ 9 YLEE: J-PARC E13 288 & n° REAH Y 42— SPO

4 E J-PARC K1.8 E—L T A NTTNIS—HRD v ¥f51CHEER E13 Z5HH L TWa [1, 2], /N
IN—RED TV F—NEN 2 EREETIET 5 C Lic X DA Ra U EERZZEHL. 7230 4>
DI HREE R TOWEDZALZIINE T L2 HNE LTV, NI 5D ~ $z DTz DK
ARV = LR Hyperball-J, BXUNAS—BERZRET 212D ART O RA—Z—
AT s SksMinus DX ZBHEHER L TW5, AEBRTCE (K-, 7)) KIGZ W TN 3= 28T %,
(K=, 77 ) KISENA RO EBEIHEDRKZ N E WS RSB D, K- - a BXOE K™ - puvik
EDNY T TTT Y REREVD, TNEDINY 7559 RENA 78— ERER L XA 5 T &hws
Hillxd, AR TIE K- — a7 oD 70 fHEN SO v fziii U, FifEA XY M e 8 AHA—BFET
FrZ5d % 72 OMiRR SPO DOYEREZ e 1 — Lz IV CRHiliZ1 T 720

A FEA T 22— SPOX TED T IAF v I v FL—R—— DY KAy FHhE & 5o Tofi
HERTH 2, v DRHZIC AR LTc S WA U 5EERES v T —IC K 2RO Z HEZHNRS  LIc Kk -
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Performance study of beamline cherenkov counters for
hypernuclear ~-ray spectroscopy at J-PARC
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We are planning to perform hypernuclear v-ray spectroscopy experiment with a germanium detec-
tor array Hyperball-J at J-PARC. Beam line cherenkov counters which are used to identify the (K—, 7w —)
reaction are installed inside the Hyperball-J. Terefore,these counters are required to be a compact read-
out system. As one possible solution, we are considering a read-out system using wave length shifting
fibers. In this test experiment, positron beam (p = 450 MeV/c) was irradiated to the cherenkov counter
which radiator was a Sillica aerogel(n = 1.05). The cherenkov lights were detected by two types of read-
out systems. One way was to use 3 inch PMT readout. The other way was usage of WLS fiber sheets. We
mesured the photoelectron distribution of two types of read-out systems, and compared mean value of
these distributions. The numbers of mean photo electron were ~ 9 p.e. and 1.54 p.e. for 3 inch PMT and
WLS fiber sheets, respectively. This result makes it clear that the fiber read-out system could not obtain
sufficient light yield. It’s absolutely essential for fiber read-out system that get more high light yield.

“Present address: GSI, Germany
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Prototype test of v counters using PWO and CsI

Shiro Suzukil!, Tetsushi Shimogawa?, Hidemoto Yamauchi?,
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Prototype of the collar counter (gamma veto counter arond the beam area) for JParc-E14 experiment
was tested with converted electron beam. Accumulation of the basic data on the energy resolution of the
PWO counter, the uniformity of the counter, shower leakage to the neighboring counters and comparison

with the GEANT-4 simulation, and evaluation of the light yield were made.
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Performance of the EM module in gamma/neutron
calorimeter for neutral kaon beam line

A. Otsul, Y. Tajima2, and H. Y. Yoshida?
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The J-PARC E14 KOTO experiment aims at the first observation of the K — w%vi decay. In
order to estimate the background in this experiment, it is important to measure the intensity and energy
distribution of gamma and neutron in the K9 beam line. “Cerberus” is a set of sandwich calorimeters
to measure gamma and neutron in the beam line. The first module of Cerberus is aimed to measure the
intensity and energy distribution of gamma, it called electro-magnetic (EM) module of Cerberus.

In this report, we have studied the linearity, energy resolution, position uniformity and the response

in high rate environment for the EM module by using positron beam with the momentum between 300
and 800 MeV/e.

§ 1. Introduction

J-PARC E14 KOTO Fid K9 — nOvv FREODIELOREZ HI L LTz [1] TH 5, 2012 FFOA
Fegbanz He5 Ui, BT K) ©—LF4 2% J-PARC DN ROV R—UIEER LTS, E—L4
HICEENS v # HEFE K — 700 ORIED background ICKE &S 5728, ZDITH)LF—
i, HEZIE L THHRE L T S EIFREHETH D, E—LHD v #E, FETFZIES 2 T2DIc 2B
575571 A—2 Cerberus Z{iH 9 %, SRIDIHERTIEZ D Cerberus D 1 BEH TH S EM module
OMREFHIEZTT - 72,

§2. Cerberus

Cerberus & KOTO FRDuiHF#HTH % KEK PS E391a D & I — LT 1 VHERICHIWES
N7iztids 2] Th s, SR KOTO EHOE—LT 1 VOHETEMHT 5, TN ZH 1 KR
9, Cerberus l& 6 GOV FA v F AR A—XTHRENTVT, TNENOEY 2 —)UE L MNTEA
A%, 8 AONEFHEMFEZRIE L Tt L TWa, i D 1 BT AF v 7 0 F L—2DH
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YRAWFNBRBEY 2—)VT, $hdmm, TTAF Y 7T UFL—2 3.4mm D 25 @H5ED, 2k
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T ET, v 8% reject LT, BERT TERHETORENATREL 155, TDIzD, TD2h5 6 BH%E
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§ 3. Experimental setup
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§4. Results

BRI RO TR E O ADC 725 3 INORYS, Y TS O IERERT T > 7o HiRRHIE Ofd
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4.1 IRIVF—ITRT DEEHM. REE
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e LAV 2 E I E OB SRR 2 R L TH D,

EjepMeV] = (4.69 +0.03) x 1072 x E[MeV] + (—14.3 + 1.9) (1)
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T ERRDF RZIE > TRV DI, #9Em ZDEK EHEIIE N B,
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§5. Summary

FALREIRFARE PR O GeVy REZEORGEFE— LT A V72> T, v /e Aaay
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= Z X Bk

1] El4: Proposal for K — 7% Experiment at J-Parc, approved July 2007.
L

[2] H.Watanabe et al.: Nucl. Instrum. Method A545 (2005) 542.

[3] T.Shimogawa: Nucl. Instrum. Method A623 (2010) 585.
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Detector tests for K°TO experiment
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We developed detectors for K°TO experiment, which aims to discover CP-violating mode, K; —
m%vv. This mode is a sensitive probe for the Standard Model and beyond. We developed a detector
system to measure K, yield and spectrum in the KL beamline at J-PARC. We also developed the K°TO

detector elements. Such prototypes were tested at LNS and performances were examined.

§1. KOTO &R

KOTO 95 [1]id J-PARC h#EesZ VT, K — nOvv il 2] 2589 29850 Ch 5, K — mvr
AR, CP ZEHECH;Z E— T, BRI NEEN IR BHEREROMEE N U2 N2 BZ 2 PIEROH
RHRETH %, T OFEOEERER THI M 2.5 x 1071 [3]TH D, KIZREIN TV, KOTO
FERI T ORAZERL TV, K — nfvw FEROFHHE, 70 H 50 2y DSV, McRICEFHELRVE
WHTETHDB, Fizo D 10 DHRIK S AAEEE 28D LR TH S,

HB1IRKOEHIC, KOTO T, HEE NRIC CsI im ) A—=2ZRE L, 70 Hh 50 2+ ZHd
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A tracker using Gas Electron Multiplier (GEM) has been developed for the J-PARC E16 experiment.
The prototype tracker was successfull constructed adn its performance is evaluated at LNS at Tohoku
University. As a result, the spatial resolution of 60, 100 and 140 um was obtained for 0°,15° and 30°
beam, respectively. Arrival time information of electrons at readout strips turns out to be useful for

tracking of inclined beam.

81. Introduction

The main purpose of the J-PARC E16 experiment is to measure mass spectra of eTe™ in nuclear
medium with high precision and high statistics [1]. Such mass spectra will give us a clear evidence for
possible restoration of chiral symmetry in nuclear matter. The counting rate of the most inner tracker is
estimated to be ~ 5kHz/ mm?. To cope with such high rate, GEMs are used in the experiment [2].

Momenta of electrons and positrons are mainly determined by three layers of Gas Electron Mul-
tiplier (GEM) trackers in a magnetic field. That is the minimum number of points to determine the
momenta of a traversing particle. The required spatial resolution for the GEM tracker is 100pm, which
gives the mass resolution of ~ 5MeV. The incident angle of a particle is expected to be 0° ~ 30°. Thus,
we need to achieve the position resolution of100um for tracks of incident angle of 0° to 30°. Even if
particles go through radially, the incident angle is expected to be 15° when they hit the edge of the GEM
tracker.

The purpose of the test experiment is to optimize a configuration of the GEM tracker to achieve

required resolution.

§2. Prototype GEM tracker

A photograph and a schematic view of a prototype of the GEM tracker is shown in Fig 2. The
prototype GEM tracker has an active area of 10cm x 10cm. From the top, a drift electrode, three GEM
foils and a two-dimensional readout board are placed. In this manuscript, we call the setup with three

GEM foils as a triple-GEM configuration. The gaps between GEM foils and a drift electrode are called
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drift gap, transfer gap 1, transfer gap 2 and induction gap as shown in Fig 1.

Fig.1.

2.1 Mechanical structure
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A photograph and a schematic view of the prototype GEM tracker

Conversion of photons into electron pairs in material is the huge background for E16 experiment. To

suppress this background, the prototype tracker should be built with low material budget. Components

in the active area of the tracker and their radiation lengths are summarized in Table 1. A mesh sheet is

also used as a cathode. The setup with the mesh sheet has a radiation length of 2.98 per mil.

Component Material Thickness | Aperture ratio | Radiation length(per mil)

Lid Mylar 25 pm 0.0871
Cathode Aluminized Mylar 25 pm 0.0882
GEM1 Copper 8 um 0.26 0.414
Kapton 50 pm 0.17 0.146

Total 0.56

GEM2 0.56

GEM3 0.56
Readout Copper 4pm 0.8 0.0559
Copper 4pum 0.171 0.232
Kapton 25um 0.0874

Total 0.375

Total 2.53

Table 1. Radiation length of the sensitive area of the prototype chamber

2.2 GEM

Gas Electron Multiplier (GEM) is originally developed at CERN [3]. A GEM foil consists of an

insulator and two thin copper layers on each sides, and they have many small holes. The specification of

a GEM foil for the prototype chamber is summarized in Fig 2. The specification of a standard GEM foil
at CERN is also shown.
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Fig.2. Specification of a GEM foil used in a prototype tracker

2.3 Readout
Two types of readout boards are tested. Both of them have two-dimensional Cartesian projective
strips. The strip pitch and width are in common. The top strip width is 70um, the bottom strip width
is 290um and the pitch is 350pum. One of the readout has effective pitch of 700um by connecting two
neighboring strips, while the other readout has separate readout electronics for each strip. The insulator
is not etched away between the top and bottom side of strips. The bottom strips cannot be directly seen

from the top side.

2.4 Gas

Two types of gases, a mixture of Ar 70%-CO3 30% and a mixture of Ar 90%- CH4 10% (Often denoted
as P10), are tested for the prototype tracker. In both cases, the gas flow rate was set at ~ 100ml/min.
Gas pressure was set at the atmospheric pressure.

A measurement of effective gain is performed for Ar 70%+COs 30% and P10. Isotope of *>Fe is used
as an X-ray radiation source for gain measurements. Since X-ray deposites the fixed energy on average,
X-ray is suitable for gain measurement of gas chamber. An example of energy spectrum detected by a
GEM chamber is shown in Fig 3. The signal around 6keV corresponds to full energy deposit peak, and
the one around 3keV corresponds to an escape peak.

The result of gain measurement is shown in Fig 4. The setup with ArCOq requires high voltage but

achieves higher gain than that with P10.
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Fig.3. Energy spectrum of ®Fe Fig.4. Comparing the gain of P10 and ArCO,
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Table 2. Setup of the test for the
No. Gas  Pitch [pm] dp [mm] Ep[V/em] Incident angle [deg]

1 ArCOq 700 11 500 0, 15, 30
2 ArCOq 350 1 2500 0, 15, 30
3  ArCOq 350 3 2500 0, 15, 30
4 ArCOq 350 6 600 0, 15, 30
5 P10 700 3 1500 0, 15, 30
6 P10 700 6 1500 0, 15, 30
7 P10 700 11 500 0, 15, 30

2.5 High voltage distribution
A high voltage is applied to GEM foils using a resistive chain through protection resistors as shown
in Figure 1. The resistive chain applies high voltage asymmetrically to each GEM foil. The top GEM
foil is operated with the highest voltage difference and the bottom GEM foil is operated with the lowest.
Since the total charge of avalanche electrons becomes large at the bottom GEM foil, low voltage is
preferable for the stable operation.

To vary the electric field of drift gap, HV is supplied separately for the drift cathode.

§3. Evaluation properties
Spatial resolution and efficiency of the GEM tracker were evaluated in the beam test: The measure-
ment is performed only for the top side readout board. The goal of spatial resolution is 100pum for angle
of 0° to 30°. Originally, the hit position is simply reconstructed from the charge information of strips.
However, in that case, the degradation of spatial resolution is expected for tracks which is inclined from
normal to the GEM tracker, because such tracks make additional spread in drift gap. Two methods to
overcome this degradation is considered.
1. Use narrow drift gap
Since narrow drift gap makes the spread of charge in drift gap smaller, small angular dependence
of spatial resolution can be expected. The major concern is efficiency because narrower drift gap
results a small charge.
2. Use wide drift gap and measure arrival time of electrons on strips
The particle trajectory is reconstructed from timing information like Time Projection Chamber(TPC).
Longitudinal diffusion and drift velocity as well as transverse diffusion can affect the accuracy of
position determination. Those properties largely depend on an applied electric field. The optimum

operational point needs to be determined.

The tested setups are summarized in Table 2.

§4. Tested setup
The test setup of the GEM tracker is shown in Fig 5. Five scintillators, 3 Silicon Strip Detector and
the GEM tracker are aligned along the beam line at LNS. The beam energy is set at 660MeV.
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A coincidence of five scintillators is used to have a beam trigger. Silicon Strip Detector (SSD) is
used for tracking. Tracing accuracy of interpolation to GEM from SSD hit positions is estimated to be

~ 60pum. Table 3 summarizes sizes of scintillators and a silicon strip detector.

GEM HBD
Tracker
st SSD1  §2 s3 4 S5
SSDO
Beam
S B 1
» t
;!; SSD2
Z o o
Y - -
~2300mm

Fig.5. The tested setup

Table 3. Size of each detector[mm]

S1 S2 S3 S4 S5 SSD
30 50 30 10 10 30

4.1 Front End Electronics and DAQ

A preamplifier consists of 2 stages of amplification part. 1M resistor and 1pF capacitance are
used as feedback. As a result the time constant of the preamplifier is 1usec. The second stage amplifies
the signal by the factor of 3.2. The total gain of the preamplifier is 3.2V /pC. The preamplifier has
differential output.

The preamplifier output is suitable for a flash ADC (RPV-160). RPV-160 has 8 channels and each
channel has 8 bits resolution for the full range of 0 ~ —1V. The sampling rate is 100MHz. A signal
is recorded for 640 samples in one event. A 23m twisted cable is used between the preamplifier and
RPV-160.

We build a DAQ system using VME system. Trigger circuit is shown in Fig 6. In this setup,
the trigger rate is limited to ~ 20Hz by the flash ADC module. An ADC module (CAEN V550) and a
sequencer module (CAEN V551B) are used for SSD. Charge and timing information of scintillators are

collected with ADC (CAEN V792) and TDC (CAEN V775).

4.2 GEM handling
The normal operation voltages of GEM foils for ArCOs and P10 are chosen as shown in Table 4. The
value is selected to have the gain larger than 10000 and to be sufficiently lower than discharge voltage.
Our GEM foil has a double-conical-shaped hole and it is known that gain of a double-conical-shaped
GEM foil increases with time because of charge-up at hole [4, 5]. In the beam test, the high voltage of the

GEM tracker was supplied for a few hours before the test. Some test setups did not follow this procedure
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Fig.6. Trigger circuit

because of time constraint. However, note that a position sensing detector is not so sensitive to the total

charge. Charge-sharing among strips plays an important role as described in the following section.

Gas top GEM [V] center GEM [V] bottom GEM [V] Transfer gap [V/em] Induction gap [V/ecm]

P10 350 340 330 3400 3400
ArCOq 391 380 369 3800 3800

Table 4. Operation voltage

§5. Analysis results
5.1 Data and analysis

A typical pulse shape is shown in Fig 7. The pulse height increases at first as electrons moving
towards readout strips in induction gap, and then decreases with the decay time constant of its readout
circuit. The maximum pulse height (V,) and its arrival time (T,) of each channel are used for further
analysis. The ADC pedestals (Veq) are subtracted from V,,. T, is defined as the time when pulse height
exceeds the half of V,,.

After the pedestal subtraction, a program scans through all the strips and find the strip with the
maximum V,,, and then recognizes as a cluster including the strips with V, > 3o . Here, on = 0ped.
In addition, a cluster is validated if its total charge exceeds 5o . Hit position of the GEM tracker is
calculated using this cluster. Details of hit position calculation are shown below.

Using this computed hit position and a track position provided by SSDs, efficiency and spatial
resolution are evaluated. Figure 8 shows a typical residual distribution between the hit position of
the GEM tracker and SSD interpolated position. A Gaussian fit to the distribution provides a standard
deviation o ¢;;. Spatial resolution is defined as , /o‘fcit — a%SD, where oggp is 60 um. Efficiency calculation

is done for events, which are found in 5 o f;.
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Fig.7. A typical pulse shape Fig.8. A typical residual distribution

5.1.1 Analysis without timing information
Two methods to compute the hit position in a cluster are applied, Center Of Gravity (COG)- method
and digital method.
COG-method
In the Center Of Gravity(COG)-method, hit position, Xcog, is given by the following expression [6].

ZiGclusteT X'L(Ql B B)
Zie::luster (Ql - B)

B=b > Q

t€cluster

(1

Xcog =

(2)

Q; Charge on the i-th strip
where X; Position of the i-th strip
b Constant

The parameter B is a fraction of total charge and is subtracted from Q; in calculation of center of
gravity to eliminate systematic fluctuation caused by total charge fluctuation. b is selected to give a best
value of o ;.

Digital method

In the digital-method, the hit position, Xgis, is given by the following expression.

Xl +X7‘

9 3

Xiig =

Xy
where

X, The position of a strip with the largest strip number
The threshold value is selected to give the best value of o¢;; with efficiency above 0.97.

The position of a strip with the smallest strip number

5.1.2 Analysis with timing information
Inclined tracks causes arrival time difference in a cluster, as shown in Fig 9.
Hit positions are reconstructed in the following way. First, a program searches the number of strips

above a preset threshold in a cluster. This threshold is set higher than that for the analysis without
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timing threshold. If the number is below 1, the hit position is calculated with digital-method. Second,
tracks are reconstructed with arrival time information of each strip in the cluster. Track position in
z-direction at each strip is calculated by multiplying the arrival time with drift velocity of electrons. We
obtain tracks in GEM tracker by fitting those points with a linear function. Slope of the linear function
is fixed to the value known beforehand. Finally, hit position is defined as the point with a fixed z. This
z is determined so that the center of residual distribution coincides with that of digital-method. Drift
velocity is determined to give the smallest of;;. An example of residual distribution with the setup
ArCOq, 350pum, dp=6mm, Ep=600V/cm is shown in Fig 10. In this example, drift velocity is determined
to be 1.5um /sec, which is consistent with the drift velocity calculated with Magboltz [7].
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Fig.9. Arrival time distribution in a event
with the setup ArCOs, 350pum, dp=6mm,  Fig.10. Typical residual distribution when hit
Ep=600V/cm position of GEM tracker is computed

with timing information

5.2 Results for top-side readout

Several setups are tested and only good setups are discussed below. Setup number 1, 2, 3 and 4
in table 2 achieves spatial resolution less than 200um for 15° inclined track. The spatial resolution is
plotted against the track’s angle for those setups in Fig 11-14. When only charge information is used,
the degradation of spatial resolution with incident angle is smaller for narrower drift gap. However, the
spatial resolution for a 30° tracks is 270um even with dp = Imm. That is far beyond our goal. We can
see that timing-methods improves o z;; for the setup 3 and 4. Timing methods become effective with the
setup having large number of hit strips and large arrival time difference in a cluster. From this point of
view, setup 1 and 2 are not suitable for timing methods because they have narrow drift gaps and large
drift velocity. In the end, the best spatial resolution for 30° inclined beam is 140pum with the setup 3

using timing method.

86. Conclusions
prototype GEM tracker was constructed for J-PARC E16 experiment. The required spatial resolu-
tion is 100 pm for tracks of incident angle of 0° to 30°.
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Two methods to overcome the problem of a resolution degradation for non-perpendicular tracks are
considered. One way is to use narrow drift gap and the other way is to use wide drift gap and measure
arrival time of electrons on strips. As a result, the best spatial resolution for 15° and 30° inclined beam
are 100pum and 140pm with the following setup. The goal of 100um is achieved for 15°, while it is not
for 30°. The effect on mass resolution is being investigated. Please note that the effect is expected to be

small since the probability to have such large incident angle is small.

Gas Pitch dp Ep Method
ArCOg 350pum 6mm 600V/ecm Timing method
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We have developed a v beam profile monitor (v-BPM) for the GeV-+ beamline. It consists of two
1 mm thick plastic scintillators and two plastic scintillating fiber hodoscopes. To determine the incident
position of the photon, a reconfigurable logic module which mounts a field programmable gate array

(FPGA) is used. The data acquisition efficiency of 98 % is achieved with 800 kHz trigger rate.

§1. ~ Beam Profile Monitor

For a 4w EM calorimeter complex FOREST [1] at the GeV-y beamline, the center position of an
incident ~ beam is used to obtain physical quantities such as particle momentum. The ~ beam profile
is determined from the position distribution of the electron-positron pairs which are created from the ~
beam.

The v beam profile monitor (v-BPM) was originally designed for the SCISSORS II experiments [2].
A data acquisition (DAQ) system was developed by using a PCI board PCI-2772C (Interface Corporation).
The typical data taking rate is about 40 kHz. For the FOREST experiment, we removed a converter and
changed the DAQ system. The front-end modules of a REPIC TDC RPT-140 and a HOSHIN ADC T004
in a TRISTAN/KEK Online (TKO) system are used with the FOREST DAQ [3].

The previous v-BPM system for the FOREST experiments consists of three plastic scintillators and
two plastic scintillating fiber (SciFi) hodoscopes. The upstream plastic scintillator is a veto counter to
reject charged particles created at the upstream materials on the GeV-y beamline. It is also used as
a converter to create an eTe~ pair. The two downstream scintillators are trigger counters to select an

eTe~ event. The trigger condition is
[Veto Counter] ® [Trigger Counter 1] ® [Trigger Counter 2],

where @ means coincidence of signals. The two SciFi hodoscopes are placed at downstream as a 2-
dimensional position counter. Each hodoscope has 16 fibers with 3 mm square. The active area is
48 x 48 mm?. Since we require one hit in each hodoscope, an e*e~ pair which goes in the same direction
is selected. Fig. 1 (Left) shows the previous detector setup. +v-BPM is placed at 2.2 m downstream of
FOREST.

The singles rates of the veto, trigger, and central SciFis are 4 MHz, 2.5 MHz, and 1.3 MHz, respec-
tively, at 1 x 107 tagged photons/sec under the normal operation of the STB ring. Since the thickness

of the plastic scintillators are 5 mm, the ete™ creation rate in these counters is not negligible to take



145

Scintillating Fiber
Hodoscopes

Scintillating Fiber
Hodoscopes

Trigger Counter

i Al Converter
Trigger Counters Veto Counier

Veto Counter

Fig.1. Schematic view of v-BPM. Left: Previous v-BPM setup consists of a plastic veto counter
and two plastic trigger counters. The thickness of each counter is 5 mm. Right: New
~-BPM setup consists of a plastic veto counter and a plastic trigger counter with the
thickness of 1 mm. A thin Al plate of 0.5 mm thickness is used as a converter. In both
setup, the plastic scintillating fiber (SciFi) hodoscopes are placed downstream as a 2-
dimensional position counter. Each hodoscope has 16 SciFis with 3 mm square. The
active area is 48 x 48 mm?.

data efficiently. We measure the v beam profile once a day during long term FOREST experiments. The
typical trigger rate is 1.8 kHz with the DAQ efficiency of 72% using faint beam.

A new ~v-BPM system has been developed to measure the v beam profile with the FOREST data
taking simultaneously. To decrease the singles rate, it is essential to reduce materials of the veto and
the trigger counters. New ~-BPM consists of a plastic veto counter and a plastic trigger counter with
thickness of 1 mm. The trigger counter has two Hamamatsu H6410 photo multiplier tubes (PMT).
Between the veto and trigger counters, a thin Al plate of 0.5 mm thickness is placed as a converter. The

trigger condition is
[Veto Counter] ® [Trigger Counter PMT-1] ® [Trigger Counter PMT-2].

The two SciFi hodoscopes used for the previous v-BPM setup are placed at downstream. Fig. 1 (Right)
shows the new detector setup of v-BPM.

To reject charged particles from the upstream beamline, the threshold of the veto counter should be
set lower than the level corresponding to the energy deposit of minimum ionizing particle (MIP), where
MIP means a particle whose mean energy loss rate through matter is close to the minimum. Since the
trigger counter selects ete™ events, its threshold should be set to the level between 1 MIP and 2 MIP
energy deposits. To check a 1.0 mm thick plastic scintillation counter was enough to observe MIP events,
we used the positron beam at the energy of 460 MeV. Fig. 2 (Left) shows the pulse height distribution of
the veto counter. Signals originating from the MIP particles (solid line) are clearly separated from the
pedestal distribution (dotted line). Fig. 2 (Right) shows the waveforms of the trigger counter measured

with a oscilloscope with the v beam. The circulating electron current in the STB was 18 mA with the
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Fig.2. Left: Pulse height distribution of the veto counter. Incident electron beam energy is
460 MeV. Signals originating from the MIP particles (solid line) are clearly separated
from the pedestal distribution (dotted line). Right: Waveforms of the trigger counter
measured with an oscilloscope with the v beam. Waveforms corresponding to 1 MIP and
2 MIP are clearly observed.

energy of 1200 MeV and the flattop of 8 sec. Waveforms corresponding to 1 MIP and 2 MIP are clearly
observed. The singles rates of the veto, trigger, and central SciFis are 2.0 MHz, 1.5 MHz, and 0.8 MHz,
respectively. The average trigger rate is 800 kHz.

§2. High-Speed Data Acquisition System

For the data acquisition (DAQ) system, we use a reconfigurable logic module which mounts a field
programmable gate array (FPGA). This FPGA based module is a modified version of multi-purpose logic
module (MPLM) [4]; the number of input/output channels are changed. It is housed in a double span
NIM standard module, having 36 NIM-standard logic inputs and 4 NIM-standard logic outputs. Fig 3

shows a photo of the FPGA based module and Table 1 summarizes the specifications.

Table 1. Specifications of the FPGA based module

FPGA Family Xilinx SPARTAN-3

Device XC3S200

Package 4TQ144

System Gate 200k

Logic Cells 4,320

Distributed RAM (bits) 30k

Block RAM (bits) 216k

Multipliers 12

DCMs 4

Output NIM 4 channels )

Input NIM 36 channels Fig.3. Photo  of the
Clock 33.33 MHz FPGA based

module.
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The v-BPM DAQ program for the FPGA based module is written in VHDL (VHSIC hardware de-
scription language) using Xilinx ISE 10.1. A clock frequency for the signal synchronization is 66.66 MHz
(15 nsec) which is obtained by multiplying the module internal clock frequency of 33.33 MHz by 2 using
Digital Clock Managers (DCMs).

The DAQ program is designed as a stand alone DAQ system and is composed of a command com-

REQ Trigger ACC
> Accept

Decision

Hit Pattern

Clock REQ [259:0]
Veto . .
Trig [1:0] Synchronizer Hit Position Data
SciFi[31:0] Trigger Estimation Buffer
. SciFi
Judgement
1 [31:0] full | data
ACK RS232C XD o
enable RS232C o Sender
Controller read/clear
RS232C RXD
start/stop/read/clear Receiver

Fig.4. Block diagram for the v-BPM DAQ system. There are two main functions. One handles
data taking (black) and the other handles command communications thorough a RS232C

serial interface (gray).

Clock I —
Trigger Counter 1
Trigger Counter 2 $

Veto

SciFi |

REQ : 5
v

State of Hit Position keep Data I Pos I Set I Keep Data
BUSY

ACC :

| Addr I Read

Clock Synchronizer
Trigger Judgement

Hit
Pos

Trigger Accept
Decision

Countup Wait

State of Data Buffer Wait
=

Addr ><
% WE

Fig.5. Timing chart of the data taking part for the FPGA based module. All signals in this chart
are clock-synchronized. Shaded areas show the dead time of each block and correspond
to 3 clocks (45 nsec). Left boxes show the block names which handle the signals shown
right. “Hit Pos” in the box means the“Hit Position Estimation” block. This block is a state
machine with “Keep Data”, “Hit Position Estimation (Pos)” and “Set Data (Set)” states.
The “Data Buffer” block is also a state machine to communicate with the BRAM memory.
The state of “Addr” is “set address of BRAM”, “Read” is “read the number of counts”,
“Count up” is “increment the number of counts by one”, and next “Wait” state is “set the
data to BRAM”. The synchronized pulse widths of the trigger counter are set to 2 clocks,
and those of the veto and SciFis are set to 3 clocks.

Data Buffer
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munication part and a data taking part. To control the DAQ system, command communications between
the FPGA based module and a personal computer (PC) are done via a RS232C serial interface. For se-
rial data transmission lines of TxD and RxD, one NIM-standard logic input and one NIM-standard logic
output are used. Analog signals from the veto, trigger, and SciFi counters are discriminated to make
the input logic signals. The FPGA based module receives three logic signals from the veto and trigger
counters, and 32 logic signals from the SciFis. The trigger condition is tested in the data taking part of
the DAQ program. Since the number of hit positions of the SciFi hodoscopes is 16 x 16 = 256, a frequency
distribution of 256 bins is stored in a block RAM (BRAM) memory.

Fig. 4 shows a block diagram of the v-BPM DAQ system. Fig. 5 shows the timing chart of the data
taking part. To reduce the DAQ dead time, the program of the data taking part is separated into 4 blocks.
Each block spends 3 clocks for one event and works separately. The dead-time is 45 nsec (3 clocks) and
the total processing time is 105 nsec (7 clocks).

All logic input signals are synchronized with doubled frequency at the “Clock Synchronizer and
Trigger Judgement” block. This block sends a signal REQ when the synchronized trigger counter signals
match the trigger condition. The “Trigger Accept Decision” block receives the REQ signal and makes a
signal ACC when the block is not busy and ready to accept an event. The “Hit Position Estimation” block
always receives the synchronized SciFi signals. When this block receives the REQ signal, a hit position
is estimated. If the number of hits in each hodoscope is one, a signal corresponding to the hit position
is sent to the “Data Buffer” block. When the “Data Buffer” block receives the ACC signal, it reads the
number of counts corresponding to the hit position from BRAM and increments it by one, then saves it
to BRAM.

The “RS232C Controller” block starts/stops the data taking, when the “RS232C Receiver” block
receives a “start” or "stop” command. The frequency distribution in BRAM is read and sent by the
“RS232C sender” when a “read” command is received. A “clear” command clears the data in BRAM.
Both “read” and “clear” commands are valid when the data taking is stopped. For each command, the

FPGA based module sends a reply to tell the PC whether the command is accepted or not.

§3. Data-Handshaking with the FOREST DAQ

Since the FOREST DAQ has 5 collectors [3], one of the collectors is used to communicate with the
PC which is connected to the FPGA based module through the RS232C serial interface. The FPGA based
module accumulates the frequency distribution measured by v-BPM during the flattop. Every spill off,
the collector asks the PC to send the v-BPM data via the Transmission Control Protocol/Internet Protocol
(TCP/IP). Then the PC sends “stop”, “read”, “clear”, and “start” commands to the FPGA based module
through RS232C. After receiving the v-BPM data, the PC sends it to the collector. The collector converts
the v-BPM data from the FPGA based module to the FOREST data format, and combines it with the
FOREST data into a single output stream, then sends it to the event builder process. Fig. 6 shows the
data-flow of the v-BPM and the FOREST DAQ system.

A performance study using v beam was carried out. The circulating electron current in the STB
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Fig.6. Data-flow architecture. One of the collectors of the FOREST DAQ system asks the PC to
send the frequency distribution of v-BPM via TCP/IP every spill off. Then the PC sends
“stop”, “read”, “clear”, and “start” commands to the FPGA based module through RS232C.
After receiving the v-BPM data, the PC sends it to the collector. The collector converts
the v-BPM data from the FPGA based module to the FOREST data format, combines
it with the FOREST data into a single output stream, and sends it to the event builder
process.
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Fig.7. Typical v beam profile taken by a new high-speed DAQ system with the FOREST DAQ.

was 18 mA with the energy of 1200 MeV. The flattop time was 8 sec. Fig. 7 shows a typical example
of the beam profile obtained with the v-BPM and FOREST DAQ system. The DAQ efficiency of 98% is
achieved with 800 kHz trigger rate.
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Construction of a 47 electro-magnetic (EM) calorimeter with BGO crystals is planned to study a
nucleon resonance N*(1670) which is a candidate of anti-decuplet penta-quark baryons. Since an EM
calorimeter module itself cannot distinguish whether the incident particle is neutral or charged, thin
plastic scintillator hodoscopes are usually placed in front of it. A plastic and BGO phoswich detector as
an EM calorimeter module for charge identification has been tested at the electron beamline for testing

detectors in Laboratory of Nuclear Science, Tohoku University.

§1. Introduction

Study of exotic hadrons has been a subject of great interest in nuclear physics since © was observed
at SPring-8/LEPS for the first time [1]. The ©T is thought to be a member of anti-decuplet penta-quark
baryons with the lowest mass [2]. After the LEPS experiment, both the positive and negative results
have been reported by many other facilities. Searching for other members is important to establish the
penta-quark picture. Recently, a narrow bump was observed at GRAAL [3], LNS [4], and CB-ELSA [5]
in 1 photo-production on the deuteron. This bump would be attributed to a member of anti-decuplet
baryons with hidden strangeness since no signature corresponding to this bump has been observed so
far in 17 photo-production on the proton [6].

Fig. 1 shows the baryon octet and anti-decuplet penta-quark baryons. Adjacent two baryons to the
©* are members with hidden strangeness. We call the left one NE? and the right one N5+ . The Ng can
be photo-produced from the neutron because both the charge and U-spin are conserved in the reaction.
On the other hand, photo-production of N, having a U-spin of 3/2 from the proton is forbidden since
the U-spins of the photon and the proton are zero and a half, respectively.

To investigate the relevant nucleon resonance precisely, construction of a new electromagnetic (EM)

calorimeter with BGO crystals is planned at Laboratory of Nuclear Science (LNS), Tohoku University.

§2. 47t EM calorimeter with BGO crystals

The planned EM calorimeter consists of 1,260 BGO crystals, and it covers the polar angle from 24
to 138 degrees. Fig. 2 shows the schematic view of the planned EM calorimeter. The details of the design
are described elsewhere [8].

Since an EM calorimeter module itself cannot distinguish whether the incident particle is neutral
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Fig.1. Octet baryons and anti-decuplet penta-quark baryons.

Fig.2. Planned EM calorimeter with 1,260 BGO crystals. It takes a shape like an egg, and covers
the polar angle from 24 to 138 degrees.

or charged, thin plastic scintillator hodoscopes are usually placed in front of it. We discuss a plastic and
BGO phosphor-sandwich (phoswich) detector as an EM calorimeter module. In this phoswich detector, a
10 mm thick plastic scintillator is connected on the front face of a BGO crystal and emitted scintillation
photons are converted to the analog signal with a single photomultiplier tube. Fig. 3 shows the side view
of the phoswich detector.

Scintillation photons are generated in the plastic scintillator only when the incident particle is
charged. Because the decay time of a BGO crystal is much longer (~300 ns) than that of a plastic scintil-
lator (several ns), the pulse shape of the output signal help us to know the charge of the incident particle.
Fig. 4 shows the expected pulse shape of the phoswich detector. By adopting a phoswich detector, we can

1. decrease the readout channels, and
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Fig.3. Plastic (PS) and BGO phoswich detector. Emitted scintillation photons are converted to
the analog signal with a single photo-multiplier tube (PMT). The scintillation photons
are generated in PS only when charged particles are incident on the detector.

2. suppress the dead area coming from light guide materials or readout devices.

Timing

BGO

Pulse Height

PS

Fig.4. Expected pulse shape of a phoswich detector. The signal from the plastic scintillator (PS)
is expected to be observed only when the incident particle is charged.

§3. Light attenuation loss in a BGO crystal

The scintillation photons generated at the plastic scintillator should reach the photo-multiplier tube
so that the phoswich detector can identify the charge of the incident particle. We have estimated the light
attenuation length from the measured transmittance of a BGO crystal with a finite length according to
Ref. [9].

The reflectance of the perpendicularly incident light at a surface is described as

n—1 2
R:<n+1> 0

where n denotes the refractive index of BGO, and the transmittance at the surface is given by

T=1-R. (2)
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The light intensity after traveling a length I becomes
o = exp (7l/Latt) (3)

in a crystal with a light attenuation length of L.y. Therefore, the transmittance of a crystal with a
length of [ is calculated as
T, =T« {nio(Ra)%} T = % (4)
by taking into account multiple bounces between two ends and the light attenuation loss in BGO.
The transmittance of BGO crystals with thicknesses of 16.8 (1.5X() and 40.0 mm was measured
with a spectrophotometer Shimadzu UV-230. Fig. 5a) shows the measured transmittance as a function
of the wavelength of the incident light. The transmittance of the 40.0 mm thick BGO crystal is almost

the same as that of the 16.8 mm one, suggesting the light attenuation length is long.
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Fig.5. a) Transmittance of BGO crystals with thicknesses of 16.8 and 40.0 mm as a function
of the wavelength of the incident light. b) Light attenuation length of BGO crystals
determined from the crystals with thicknesses of 16.8 and 40.0 mm. The attenuation
length is longer than 2 m for the wavelength from 350 to 900 nm.

The light attenuation length has been estimated from Eq. (4) by using the refractive index as a
function of the wavelength given in Ref. [10]. Fig. 5b) shows the light attenuation length of the BGO
crystals. It is shorter than 20 cm at the wavelength less than 320 nm, and is enough longer at the longer

wavelengths. The details of the analysis are described elsewhere [11].

§4. Experimental Setup

The pulse shapes of the phoswich detector in response to the electron beams with several momenta
from 200 to 800 MeV/c have been acquired at Laboratory of Nuclear Science, Tohoku University. To
determine the incident timing and the trigger for the data acquisition, a 10 mm square plastic scintillator
(PS) with a thickness of 3 mm was placed in front of the detector. Both sides of the PS are connected to
photo-multiplier tubes (PMT) Hamamatsu R4125GMOD. A metal-packaged PMT Hamamatsu R8900U
with a breeder E5996MOD was used for the detector. All the output signals are directly input to a digital
phosphor oscilloscope Tektronix DP0O-4104, which is remotely controlled using the Ethernet [12]. Fig. 6

shows the experimental setup for the beam test of the phoswich detector.
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—~—

Phoswich Detecter

R4125GMOD
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Fig.6. Experimental setup for the beam test of the phoswich detector. A 10 mm square plas-
tic scintillator with a thickness of 3 mm, both sides of which are connected to a PMT’s
Hamamatsu R4125GMOD, is placed in front of the phoswich detector. All the signals are
directly input to a digital phosphor oscilloscope Tektronix DPO-4104.

Since the scintillation photons are emitted only in the BGO crystal of the phoswich detector when
neutral particles are incident on it. The pulse shapes of the phoswich detector without PS (BGO crystal
only) in response to the electron beams were also acquired in order to know the pulse shapes for neutral
particles. Fig. 7 shows the typical pulse shapes of the BGO crystal and phoswich detector in response
to the electron beam with a momentum of 457 MeV/c. The pulse shapes in the leading edge region are
different between the BGO crystal and phoswich detector, and the PS component is clearly observed in

the pulse shape of the phoswich detector.

§5. Charge Identification Efficiency

In order to estimate the charge identification efficiency of the phoswich detector, a PS component in
the pulse shape was obtained by subtracting the average BGO pulse shape from the phoswich detector
one event by event. The average BGO pulse shape was given for each incident electron momentum,
and it was normalized event by event so that the charge integration in the tail region ([4+-20, +300) ns)
became the same. The charge excess was integrated in the leading edge region ([—20,+10) ns). Fig. 8
shows the charge excess distribution with several RTAGX currents which specifies the momentum of
the electron beam.

By setting the appropriate threshold for the charge excess, the charge identification efficiency of
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Fig.7. Typical pulse shapes of the BGO crystal and the phoswich detector in response to the
electron beam. The pulse shapes have been taken at E. = 457 MeV/c.
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Fig.8. Charge excess distribution with several RTAGX currents. The RTAGX current is de-
scribed in each panel. The dotted and solid lines show the charge excess distributions
for the BGO crystal and phoswich detector, respectively. The RTAGX currents of 100.
150. 230, 300, and 400 A correspond to the electron momenta of 200, 300, 357, 589, and
744 MeV/e, respectively.

100% was obtained for all the RTAGX currents. The details of the analysis are described elsewhere [13].
In Ref. [13], the various methods of the charge identification, the stability of it by varying the timing
regions for the charge excess integration and the pulse shape normalization, and a phoswich detector

with a 5 mm thick PS are also discussed.
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§6. Summary

A plastic and BGO phoswich detector as an EM calorimeter module for charge identification was
tested at the electron beamline for testing detectors in Laboratory of Nuclear Science, Tohoku University.
The charge excess for the PS component was obtained by subtracting the average BGO pulse shape from
the phoswich detector one. Assuming the pulse shapes of the phoswich detector without PS (BGO crystal
only) in response to the electron beams are the same as those for neutral particles, 100% of the charge

identification was achieved for all the electron momenta from the charge excess information.
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We have studied beamline aerogel cherenkov counters (BAC, SAC1, SAC2) which are used to iden-
tify the (K —, 7 ~) reaction for the hypernuclear ~-ray spectroscopy experiment E13 at J-PARC. The
efficiencies for these counters for 1.4 GeV/c w~ are required to be more than 99% in order to identify
the real (K —, 7 ~) reaction and to reject background due to the misidentification of #— or K~ beam
particles. The photo-electron numbers of these counters for 450 MeV/c positron beam were measured
to optimize the structure of the counters to obtain a large photo-electron number with a reasonable
thickness of the counter. The obtained photo-electron numbers were ~28, 27 and 22 for BAC, SAC1 and
SAC2, respectively. The efficiency for 1.4 GeV/c 7w~ is estimated to be more than 99.9% by setting the
threshold at 6~8 photo-electron level. The photon-electron contribution from the materials other than
the aerogel was also measured to be 1.9 p.e. as a mean value. By setting the same threshold level (6~8

p.e.), the misidentification due to this effect is suppressed to be less than 0.1%.
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We performed a test experiment to investigate the performances of a gas Cherenkov counter (for the
J-PARC K1.8 beamline), and a total-internal-reflection glass Cherenkov counter (for the P28 experiment
at J-PARC K1.8BR beamline). As for the gas Cherenkov counter, we found the number of photoelectrons
can be large enough by adjusting the isobutane gas pressure to 1.7 atm, through the measurements
between 1.0 and 1.4atm. We also demonstrated total internal reflection at the surface of a borosili-
cate glass with optical polishing for Cherenkov light, while the loss due to multiple reflections is not

negligible.

§1. Introduction

A test experiment was carried out in June 2009 by irradiating the positron beam on two kinds of
detectors, a gas Cherenkov counter and a glass Cherenkov counter. The gas Cherenkov counter, whose
purpose is to distinguish electrons (positrons) from others, is now installed at the K1.8 beamline. The
glass Cherenkov counter is prepared for K~ /p separation in the P28 experiment [1] at the K1.8BR

beamline. The detail of each counter will be described below.

82. Gas Cherenkov Counter

A new gas Cherenkov counter had to be developed, because the previous one used at the KEK-PS
K6 beamline is too thick to install between the mass slit and the BH1 hodoscope in the K1.8 beamline
(Fig. 1). The clearance at the K1.8 beamline is only about 30cm. It is used for e/ separation in the
beam (> 1GeV/c), which is difficult by use of the time-of-flight analysis. It is crucially important to
achieve a high detection efficiency of e*, which was more than 99.9% at the KEK-PS K6 beamline, even
with a thinner Cherenkov counter, so as to reduce the contamination of e* in 7-beam trigger events.

The refractive index of the Cherenkov radiator should be around 1.002, since the maximum beam
momentum available is around 2.0 GeV/c. (Pressured) isobutane had been considered as a candidate,
instead of freon-12 used at the KEK-PS K6 beamline.

Figure 2 shows the design of the new gas Cherenkov counter. The mirror reflector, whose shape is a
paraboloid of revolution, is a borosilicate glass with aluminum evaporation coated with MgFy, which is

transparent to ultraviolet light. The reflected Cherenkov light is detected by a 5-inch PMT (R1250-03)



165

Fig.1. Layout of the K1.8 beamline and the SKS spectrometer. The gas Cherenkov counter
(BGC) is located between the second mass slit (K1.8MS2) and the BH1 hodoscope.

with a UV-transparent window.

Before installing the counter in the K1.8 beamline, the detection efficiency of e* was evaluated
by irradiating 450 MeV positron beam at LNS. Figure 3 shows an experimental setup, when the beam
was injected in the center of the entrance of the Cherenkov counter. The position and incidence angle
dependence was also investigated, as well as the dependence on the gas pressure.

An example of the ADC distribution is shown in Fig. 4. It was fitted with a Poisson distribution,
taking into account the finite resolution of the ADC for a single photoelectron, and the average number
of photoelectrons was estimated to be 3.7. It was found that around 0.4 photoelectron was not from
the Cherenkov radiation in isobutane gas, by comparison with the ADC distribution of the Cherenkov
counter filled with argon, whose Cherenkov light should be much less than the isobutane-filled one. The
origin of this photoelectron is considered to be Cherenkov radiation in the borosilicate glass of the mirror.
After the test experiment at LNS, we painted the inner surface as well as the opposite side of the mirror
with matte-black paint. As expected, a single-photoelectron peak has been disappeared when a pion was
injected at J-PARC.

The result on the position and incidence angle dependence is shown in Fig. 5. Since the light
focussing is optimized for the central injection, a smooth dependence was observed. The reason why the
dependence on the horizontal position is not symmetric, while the counter itself should be symmetric, is

now found to be a small misalignment of the mirror.
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Fig.2. Side view of the gas Cherenkov counter. The beam will be injected from the left.

<
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Fig.3. Experimental setup at LNS. The gas Cherenkov counter was located between two sets of
beam defining counters.

The pressure dependence was also studied by changing the pressure from 1.0 atm to 1.4 atm, and it
is confirmed that the number of photoelectron is almost proportional to the pressure, which is naturally
explained by the approximation that n — 1 (n: refractive index) is proportional to the pressure.

Based on these results, it has been concluded that the number of photoelectrons will be large enough

(> 5), and the detection efficiency will be at least 99.4%, for the normal incidence of e*’s within 100 mm
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Fig.5. Position dependence of the number of photoelectrons along the horizontal (left) and ver-
tical (right) direction. The circle and triangle marks correspond to normal incidence and
5°-tilted incidence, respectively.

(horizontal) and 20 mm (vertical) from the center, if the gas pressure is increased to 1.7 atm.

§3. Glass Cherenkov Counter

The E15 experiment [2] at the J-PARC K1.8BR area aims to investigate the possible existence
of deeply-bound kaonic nuclear state, K~ pp, by the (K, n) reaction on 3He. The 1.0 GeV/c K~ beam
guided by the K1.8BR beamline will irradiate the helium-3 target, located at the center of the Cylindrical
Detector System (CDS) for the detection of decay particles. In order to separate ejected neutrons from
non-interacting K ~’s, a sweeping magnet will be installed downstream of the CDS (Fig. 6).

By the way, it is known that KN interaction has a strong isospin dependence. Hence, the com-
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Fig.6. Experimental setup of the E15 experiment at the K1.8BR beamline. A glass Cherenkov
counter will be installed between the Cylindrical Detector System and the sweeping mag-
net, as indicated by the arrow.

parison between two kinds of reaction spectroscopy with the (K—, n) and (K, p) reactions, which is
proposed as the P28 experiment [1], may be meaningful so as to extract information on isospin depen-
dence of antikaon-nucleus interaction.

Scattered protons by the (K —, p) reaction on the target will be bent by the sweeping magnet opposite
to beam kaons, and they will be detected by additional plastic scintillation counters, located close to
neuron counters. We plan to install a beam veto counter in between the CDS and the sweeping magnet.
The momentum of the kaon beam will be 1.0 GeV /¢, optimized for the E15 experiment. Assuming a
momentum bite of 3%, its velocity (in terms of the light velocity) 3 spreads between 0.891 and 0.902.
On the other hand, the proton between 1.0 and 1.4 GeV/c (corresponding to the missing mass between
2200 and 2550 MeV/c?) has its velocity betwen 0.729 and 0.831. Therefore, the threshold must be set
between 0.831 and 0.891.

Instead of an aerogel Cherenkov counter with its refractive index around 1.20, a glass Cherenkov
counter under total internal reflection condition is under investigation. The threshold for a normally
incident particle is 1/v/n2 — 1. The threshold with a borosilicate glass of BK7, whose refractive index is
about 1.53 at 400 nm is roughly estimated to be 0.864, which may satisfy the requirement. The threshold
dependence on the incidence angle can been evaluated by a Monte Carlo simulation, taking into account
the beam spreading and the acceptance of the proton counter.

The main purpose of this test experiment was to verify the transmission of Cherenkov light with
multiple reflections at the surface of a commercially available glass with optical polishing, which has
some degree of non-flatness and roughness. A prototype counter of a 200 x 200 x 0.5mm? BK?7 glass (the
same size to be installed) viewed by two PMT’s (H6522) at one side, was developed. They were covered by
a black box for light shielding, but no reflective material was used. The counter together with the beam

defining counters, like those shown in Fig. 3, was installed downstream of the gas Cherenkov counter
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Fig.7. Prototype glass Cherenkov counter at the positron beamline.
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Fig.8. Number of photoelectrons of the glass Cherenkov counter, 1°-tilted against the beam axis.
The signals of the two PMTs are added.

(Fig. 7), and the position and incidence angle dependence was measured.

Figure 8 shows the distribution of the number of photoelctrons. The average number was found
to be around 6, which was about 1/3 of the expected value assuming no transmission loss, which is
partly attributed to the imperfection of the surface. Except for the absolute value, the dependence on
the incident position and angle was almost consistent with the expectation.

Based on these results, we reached the conclusion that we had to increasing the number of pho-
toelectrons by changing the radiator. While a BK7 glass is opaque to UV light, a NSG Super Clear
glass(Nippon Sheet Glass Co., Ltd.) has a high transmittance for > 220nm, and a refractive index
similar to a BK7 glass in the visible light region [3].
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§4. Summary

The performances of two kinds of Cherenkov counters for experiments at the the K1.8 beamline,
and the P28 experiment at the K1.8BR beamline, J-PARC, were examined at the LNS positron beam-
line. It is confirmed that the gas Cherenkov counter has a detection efficiency good enough for electrons
(positrons). The surface of an optical-polished glass is found to have a fairly good flatness and small
roughness for total internal reflection of Cherenkov light, although further R&D is necessary for in-

creasing the number of photoelectrons.
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A prototype electromagnetic calorimeter for the u — e conversion experiment, COMET, has bee
tested with 100 MeV electron beams. Four MPPCs were directly connected to the LYSO crystal. This is
the first beam test for this crystal calorimeter directory connected to the MPPCs. Photon yields to the

MPPCs were measured with this system.

§1. Introduction

Charged Lepton Flavor Violation (cLFV) processes are highly suppressed to the unobservable level
in the Standard Model (SM). Therefore, the discovery of the process implies existence of the physics
beyond the SM. Muon to electron conversion in a muonic atom (u — e conversion) is one of the cLFV pro-
cesses. In many theoretical models, such as the SUSY-GUT, predict its branching ratio at experimentally-
reachable levels. The COMET experiment (J-PARC E21) [1] was proposed to search the p — e conversion
with a single event sensitivity of BR(u~ Al — e~ Al) < 10716, The experiment was approved as the
stage-1 by the J-PARC PAC in July 2009, and many R&Ds are underway to start the experiment as soon
as possible.

In the COMET experiment, momenta of converted electrons are measured by a straw tube tracker
then total energies of the electrons are measured by an electromagnetic (EM) calorimeter. In order to dis-
tinguish converted electrons from background electrons and to get hit timings, a high energy resolution
og of < 5% at 105 MeV and fast time response are required for the EM calorimeter. The detector need to
be operated in the Vacuum and strong magnetic field (1 Tesla). In order to fulfill these requirements, an
EM calorimeter based on LYSO (Lu;.§Y(.2S5i05) crystals with MPPC (Multi-Pixel Photon Counter) read-
out has been proposed. LYSO has large light-yield outputs of 75% compared to Nal and small Moriele
radius of 2.3cm. MPPC is a silicon photo multiplier detector, comprised of multi APD pixels operated
at Geiger mode by applying low voltages under 100V, which can be operated at room temperature un-
der strong magnetic field in the super-conductive solenoid. MPPCs are recently used or considered to
be used in some particle physics experiments, such as in T2K and ILC. These MPPCs are connected to
scintillators using a optical fiber. However, In the COMET experiment, a MPPC are connected directly
to a crystal to make a crystal calorimeter. This is the first calorimeter which adopt the direct-connection
of the MPPC.

We made a simple prototype calorimeter to test this new system, and carried out a beam test with
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electron beams at GeV-v experimental area of the Research Center for Electron Photon Science, Tohoku

University, from 14th to 19th December 2009. This report describes results of the beam test.

§2. Beam test for the calorimeter prototype

The beam test aimed to measure light yields of the prototype with electrons of 100 MeV, same
energy of the conversion electron. This is important to estimate the number of photons and the energy
resolution of the EM calorimeter in a Geant4 based simulation.

The prototype consists of a single LYSO crystal of dimension of 6cm diameter and 20cm long with
four MPPCs attached on an end of the crystal. Figure 1 is a picture of the LYSO crystal. Model number
of the MPPC is S20362-33-025C of HAMAMATSU Photonics K.K. Its active area is 3mmx3mm, and the
number of pixels per MPPC is of 14,400 pixels, as shown in Fig.2. A teflon tape was wound around the

crystal except for regions where MPPCs were attached to increase photon collection efficiencies.

Fig.2. A Picture of the MPPC, S20362-
33-025C of HAMAMATSU Photonics
K.K., used in the beam test.

Fig.1. A Picture of the LYSO crystal.

The prototype was installed in a light-tight box of dimension of 50cm x50cm x60cm (Figure 3). A
trigger counter (10mm x 10mm x3mm) was located at the upstream of the crystal. Beam data were taken
when both PMTs of the trigger counter had hits in the spill gate and LED data were taken with 10 Hz
at the end of spills.

We took data for electron beams energy of 48 MeV, 73 MeV and 100 MeV, as shown in Fig.4. The
lower two energies were used to check the linearity of the light yields.

The number of photons was estimated from the measured ADC distribution using a deposit energy

distribution calculated by a Geant4 simulation. The number of photons IV, .. is given by
Npe.=Eea x I xpy x e"’* x appp (1)

, where E .4 [MeV] is a deposit energy, I (= 33,000 [photon/MeV]) is the number of photons produced
by 1 MeV deposit energy, po is a photon collection efficiency (acceptance) of a MPPC, L (= 20 c¢m) is an
average path length of photons to a MPPC, Ay (= 20.9 cm) is an attenuation length of LYSO and appg
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Fig.3. Setup of the beam test. Prototype calorimeter, trigger counters and a LED were installed
in the light-tight box.

(= 0.25) is the photo detectiion efficiency of MPPC. And, expected ADC values are calculated by

ADCgip, = .f(Np.e.a\/ Np.e.) x Gpmppc X € X pP1 X Gapc (2)

, where f(u,0) is the Gaussian distribution, Gysppc (= 2.5x10%) is a MPPC gain, e (= 1.6x10% [C]) is
the elementary electric charge, p; is an amplifier’s gain and Gapc [pC/count] (= 0.25) is a conversion
factor of the ADC. The free parameters py and p; were determined by fitting with data and MC so as the
x2 to be minimum. The x? is defined as

= S(ADCipm — ADCepp)?
62 + 02

sim exp

3)

, Where d4;,, and desp are statistic errors at each bin of ADC distribution for the simulation and data,
respectively. A measured ADC distribution at 100-MeV electron beams and the calculated number of
photons are shown in Figure 5. The number of photons per MPPC N, .. was determined to be 311 + 72
for 100 MeV electrons.

83. Conclusion

We have been developing the EM calorimeter to measure energy of converted electrons for the
COMET experiment, the next generation u — e conversion search experiment. A calorimeter prototype
composed of a single LYSO crystal with MPPC readout was tested with 100-MeV electron beams at
Tohoku University. The number of photons per MPPC N, .. was 311 + 72 for 100 MeV electrons. From
this number, we can estimate performance of the calorimeter and optimize its design with Monte Carlo
simulations. A preliminary result of the simulation study, which used the beam test result, showed that
an energy resolution of 5% can be achieved by using two 25um x 25um-MPPCs at each LYSO crystal

segment with a size of ¢ 6 cm x 20 cm.
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Techniques of growing BisSizO12 (BSO) crystals have been improved, so that clear and large ones
have become available. We have investigated the scintillation characteristics of a newly produced BSO
crystal. The excitation-emission spectrum, and the light attenuation length of a BSO crystal are re-

ported.

§1. Introduction

Bismuth silicate BisSi3O15 has been developed as an alternative to BGO, and it is produced by
replacing Ge in BGO with Si. Although BSO resembles BGO in physical and optical properties, the decay
time of BSO (~ 100 ns) is much shorter than that of BGO (~ 300 ns), and it is welcome for constructing
electro-magnetic (EM) calorimeters. Techniques of growing BSO crystals have been refined, and clear
and large ones have become available. We have investigated the properties of a newly produced BSO

crystal from various aspects [1-3].

§2. Excitation-emission spectra

The excitation and emission spectra of BSO were measured with a fluorescence spectrophotometer
Hitachi F-4500. The excitation light from a 150 W xenon lamp was selected with a 2.5 nm width slit
after analyzing it with diffraction grids. The emission light from the BSO surface was also analyzed
with the same condition and was measured with a photo-multiplier tube (PMT).

All the emission spectra were obtained by subtracting background spectra measured without the
lamp. The intensity of the lamp and the sensitivity of the PMT as a function of the wavelength were
corrected. The second and third harmonics of the excitation light appears when it reflects on the BSO
surface and comes into the diffraction grids for the emission light. To reject these harmonics, we used
a cut filter Shimadzu UV-39. Fig. 1 shows the emission spectra of a BSO crystal for all the excitation
wavelengths.

The measured spectra with UV-39 were corrected by using its transmittance. The emission spectra
were obtained by combining the measured spectra with and without UV-39. Fig. 2 shows the intensity
correlation of BSO between emission and excitation wavelengths, and Fig. 3 shows the excitation and
emission spectra of BSO. The peak excitation wavelength is 285 nm at an emission wavelength of 480 nm,

and the peak emission wavelength is ~ 480 nm at an excitation wavelength of 280-290 nm.
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Fig.1. Emission spectra of a BSO crystal for all the excitation wavelengths. The upper panel
shows the emission spectra without using the cut filter UV-39, and the lower shows those
with UV-39. The excitation wavelength is described in each spectrum. The second and
third harmonics of the excitation light disappear by using UV-39. The gray curves show
the measured and background spectra, and the black show the background subtracted
emission spectra.
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The emission spectra of BSO were measured by Kobayashi et al. twice. The first measurement
was made with a spectro-fluoro-photometer Shimadzu RF-510 [4] and the second one was made with
a fluorescence spectrophotometer Hitachi F-4500 [5]. These spectra differ and the present results are
similar to the spectra obtained in the first measurement although it has a fake peak at 570 nm due
to the instrumental problem. It seems that the background spectra which can be obtained without the

lamp have not been subtracted in the second measurement. The details of the analysis are described

elsewhere [7].

§3. Light attenuation length
The light attenuation length is an important parameter for an EM calorimeter module. We have

estimated it from the measured transmittance of a BSO crystal with a finite length according to Ref. [8].

100

Transmittance (%)
)]
(=)

2050 300 400 500 600 700 800 900
Wavelength (nm)

Fig.4. Transmittance of BSO crystals with thicknesses of 17.3 and 40.0 mm as a function of the
wavelength of the incident light.

The reflectance of the perpendicularly incident light at a surface is described as

n—1 2
R:<n+1> 0

where n denotes the refractive index of BSO, and the transmittance at the surface is given as

T=1-R. (2)
The light intensity after traveling a length I becomes
a = exp (—1/Lay) 3)

for a crystal with a light attenuation length of L. Therefore, the transmittance of a crystal with a

length of I is calculated as

o0 D2
Tl:Ta{Z(Ra)Q"}T:m (4)

n=0
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by taking into account multiple bounces between two ends and the light attenuation loss in BSO.

The transmittance of BSO crystals with thicknesses of 17.3 and 40.0 mm was measured with a
spectrophotometer Shimadzu UV-230. Fig. 4 shows the measured transmittance as a function of the
wavelength of the incident light. The transmittance of the 40.0 mm thick BSO crystal is 10% lower than
that of the 17.3 mm one at the wavelength from 300 to 400 nm, suggesting the light attenuation length
is shorter at these wavelengths.

The light attenuation length has been estimated from Eq. (4) by using the refractive index as a
function of the wavelength given in Ref. [9]. Fig. 5 shows the light attenuation length of the BSO crystals.
It is shorter than 30 cm at the wavelength from 300 to 400 nm, and is enough longer at the longer

wavelengths. The details of the analysis are described elsewhere [10].
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Fig.5. Light attenuation length of BSO crystals determined from the crystals with thicknesses
of 17.3 and 40.0 mm.

§4. Summary
The scintillation characteristics of a BSO crystal have been investigated. The peak excitation and
emission wavelengths are 285 and 480 nm, respectively. The light attenuation length is shorter than

30 cm at the wavelength from 300 to 400 nm, and is enough longer at the longer wavelengths.
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Erratum: Energy Resolution of a Prototype EM Calorimeter
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H. Shimizu!, K. Suzuki!, and H. Yamazaki'!

Laboratory of Nuclear Science (LNS), Tohoku University, Sendai 982-0826, Japan

We found a bug in the fitting procedure of the ADC distribution with a logarithmic Gaussian. The

energy resolution of the BSO calorimter reported is higher than it is.

§1. Logarithmic Gaussian

The logarithmic Gaussian which incorporates the asymmetry [1] is described as

_ 2 2
Gr(x) = Nexp [— 2;_2 {log (1 _ xUE“ 77)} B 0'21:1 , (1)
L

where NN is the normalization factor, i is the mean, o is the experimental resolution, and 7 is the

asymmetry. The oy, is expressed by the asymmetry as

2 ht né

o = —sin

§ 2’

where £ is a constant 21/log 4. The limit of the logarithmic Gaussian at n = 0 is a nominal Gaussian.

(2)

The fitting procedure with a logarithmic Gaussian in Ref. [2] omitted 2/¢ in Eq. (2), and

o = sinh ™! %S 3)

was mistakenly adopted. Thus, the ratio of the width to the mean reported in Ref. [2] is about £/2 =

1.177 times as large as it is.

§2. Energy Resolution

The measured energy distirbutions were fitted with a logarithmic Gaussian correctly, and the mean
and width were obtained. Fig. 1 shows the re-analyzed width-mean ratio o/ and energy resolution
or/E.

The energy resolution o g/ F as a function of the incident energy E; was fitted with

9 9 1/2
% (E:) = {(0.000;;0.118) n ( 1.786 j];(_).OlG > +(1.306 + 0.044)2} , (1)

where the units of the resolution and E; are % and GeV, respectively. The energy resolution for 1 GeV
positrons corresponds to 2.04%. The details of re-analysis are described elsewhere [3]. In Ref. [3], the

energy resolutions estimated for the various incident positions to discuss the crystal boundary effects.
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Fig.1. Energy resolution as a function of the incident positron energy. The open circles show
o /u and the filled ones show og/E. The data points for o/ E are compared with the
fitted function (4).

References

[11 H. Ikeda, et al: Nucl. Instr. and Meth. A 441, 401 (2000).
[2] S. Kuwasaki, T. Ishikawa et al.: Research Report of LNS 41, Tohoku University, 11 (2009).
[3] T Ishikawa: Internal GeV-vy Analysis Note No. 129D (2009).






[I. Radiochemistry



FEIF ClE  5542&43% 2010 185

(LNS Experiment : #2627, #2643, #2665, #2683)
Ve FBEHETATERIC X % RKGEAHIR R DERZRDE & (11)
KWz, SR, HEETT

BRI RERAGEL T AR (192-0397 S \EF RN 1-1 )

Photon Activation Analysis of Carbon in Atmospheric
Suspended Particulate Matters (I1I)

Yasuji Oura, Tomonori Suzuki, and Mitsuru Ebihara

Graduate School of Science and Engineering, Tokyo Metropolitan University,1-1
Minami-Ohsawa, Hachiouji, Tokyo 192-0397

Total carbon contents in atmospheric suspended particulate matters, PM;o and PM, 5, collected
at Hachioji, Tokyo from 2003 to 2009 were determined nondestructively by instrumental photon acti-
vation analysis. Particulate concentrations and carbon concentrations for 7 years were observed to be
roughly constant. And all PM, 5 particulate concentration values were larger than environmental qual-
ity standard value. The concentration values in this work were compared with those obtained by Tokyo

metropolitan government.

§1. IXLC&IT

KEHIT IR & IR R 2 R DRI DRIR B K T ZEIE > TV 5D, 258154 10pum LU ORI 1
(PMyg), HTHBIFC 2.5um DL RORIT (PMas) &, PHIIC & D ADBZES ETHRVAEN, (EEHICEK
R IFTAHEN N D 2 128, Z OFHERHIREIC S OB N TS, RRHICIRBEES 2R OB
HHEZ, TE T PMyp B ISR U TORBEES N T, 2009 I PMy 5 B SRS 2 ERBEEAEE 3%
ESNTz. A 2002 XD PMyo ki 17z, 2005 KD PMyg IChlA T PMy s Ki F 2R L, ZDrk
FR e T HEHE T (NAA) ICTRRTE . L LEDD, Bk FOTETEDO—DT, HEjEH
B OPHEK P ZDFISEIFRDO—DTH 5 L EZ LN KRAK, NAA TIERTERWYD, JETH
BHE TS & O ipliEh T ORI ER LT E (1, 2. ARTIE 2009 4% THRELL 72iEHC DWW T
DIRFIEE T 5.

§2. £ B

PM;o 725 THC PMy 5 R FOEREUE, EEREHRGREARIRT v >S8R 8 SfiiE LI THEAIT-> 72, s
16.7 L/min IC TR&ZAHELT ¢ )LZ (QMA, Whatman) 738 U TR 2~5 R 705 | U TR 172
LT [2]. PMyo 3RRET, PMyy & PMy s OFEIKEREUIHIC 1 B